
57

Introduction

Now that you know something about the basic structure of Python pro-
grams, you are ready to learn how to solve more complex problems. For the
time being we will still concentrate on programs that produce output, but
we will begin to explore some of the aspects of programming that require
problem-solving skills.

The first half of this chapter fills in two important areas. First, it examines
expressions, which are used to perform simple computations in Python,
 particularly those involving numeric data. Second, it discusses program
 elements called variables that can change in value as the program executes.

The second half of the chapter introduces your first control structure: the
for loop. You use this structure to repeat actions in a program. This is useful
whenever you find a pattern in a task such as the creation of a complex figure,
because you can use a for loop to repeat the action to create that particular
pattern. The challenge is finding each pattern and figuring out what repeated
actions will reproduce it.

The for loop is a flexible control structure that can be used for many tasks. In
this chapter we use it for definite loops, where you know exactly how many
times you want to perform a particular task. In Chapter 5 we will discuss
how to write indefinite loops, where you don’t know in advance how many
times to perform a task.

Chapter 2

 2.1 Basic Data Concepts
■■ Types
■■ Expressions
■■ Literals
■■ Arithmetic Operators
■■ Precedence
■■ Mixing and Converting Types

 2.2 Variables
■■ A Program with Variables
■■ Increment/Decrement Operators
■■ Printing Multiple Values

 2.3 The for Loop
■■ Using a Loop Variable
■■ Details about Ranges
■■ String Multiplication and

Printing Partial Lines
■■ Nested for Loops

 2.4 Managing Complexity
■■ Scope
■■ Pseudocode
■■ Constants

 2.5 Case Study: Hourglass
Figure

■■ Problem Decomposition and
Pseudocode

■■ Initial Structured Version
■■ Adding a Constant

 Chapter Summary

 Self-Check Problems

 Exercises

 Programming Projects

Data and Definite Loops

M02_REGE5983_01_SE_C02.indd 57 14/06/2018 15:25

58 Chapter 2 Data and Definite Loops

2.1 Basic Data Concepts

Programs manipulate information, and information comes in many forms. For example, a
program to keep track of library book rentals might store each book’s title, author, ISBN
number, date it was checked out, name of the person to whom it was checked out, and
more. Each of these pieces of data is a different kind of data: the title and author are words
of text, the ISBN is an integer, the checkout time is a calendar date, and so forth. The idea
of different pieces of data coming in different forms and having different allowed sets of
values is related to the notion of data types, which we will explore in this section.

Types

Python programs can manipulate data, such as performing numerical computations
similar to a calculator (1 + 1 equals 2) or searching through a body of text for a given
keyword (display all dictionary words that begin with the letter “k”). Every piece of
data that you manipulate in a Python program will be of a certain type, where a type
describes a set of related values along with a set of operations you can perform on those
values. One example of a type is integers, which includes values like 0, 1, 2, -4, 65536,
and so on; and operations such as addition, subtraction, and multiplication. As you write
code you will often find yourself thinking about what types of data you intend to use.

Data Type

A name for a category of data values that are all related, such as type int in
Python that represents integer values.

Some programming languages have a syntax that insists on the programmer explic-
itly referring to types of data throughout the code. Python has a shorter and simpler
syntax where the type of each piece of data you mention in your program is generally
automatically inferred from the data value itself. For example, if you write a Python
program that asks to compute the result of 1 + 1, the Python interpreter infers that you
are performing a calculation on integers.

Python includes a wide variety of built-in types. We will not explore all of them in
this chapter or even in this text as a whole, since some of them are not needed for basic
programs. Table 2.1 lists some of Python’s built-in data types.

Let’s begin our exploration of data and types by looking at calculations with num-
bers. We will focus on two numeric data types in Python: int, which represents integers

Type Description Examples

int integers (whole numbers) 42, 3, 18, 20493, 0

float real numbers 7.35, 14.9, 19.83423, 6.022e23

str sequences of text characters (strings) "hello", 'X', "abc 1 2 3!", ""

bool logical values True, False

Table 2.1 Commonly Used Data Types in Python

M02_REGE5983_01_SE_C02.indd 58 14/06/2018 15:25

2.1 Basic Data Concepts 59

(whole numbers) such as 42; and float, which represents real numbers with a decimal
point such as 3.14. The type names int and float are Python keywords, and we will
explore the usage of those keywords later in this chapter.

It may seem odd to use one type for integers and another type for real numbers.
Isn’t every integer a real number? The answer is yes, but these are fundamentally dif-
ferent types of numbers. The difference is so great that we make this distinction even
in English. We don’t ask, “How much sisters do you have?” or “How many do you
weigh?” We realize that sisters come in discrete integer quantities (0 sisters, 1 sister,
2 sisters, 3 sisters, and so on), and we use the word “many” for integer quantities (“How
many sisters do you have?”). Similarly, we realize that weight can vary by tiny amounts
(175 pounds versus 175.5 pounds versus 175.25 pounds, and so on), and we use the
word “much” for these real-number quantities (“How much do you weigh?”).

In programming, this distinction is even more important, because integers and real
numbers are represented in different ways in the computer’s memory: Integers are
stored exactly, while real numbers are stored as approximations with a limited number
of digits of accuracy. You will see that storing values as approximations can lead to
round-off errors when you use real number values.

The name float for real values is not very intuitive. It’s an accident of history
in much the same way that we still talk about “dialing” a number on our telephones
even though modern telephones don’t have dials. Real numbers in computing are often
referred to as floating-point numbers because of the way that a computer’s central pro-
cessing unit (CPU) represents and handles them. In 1972 the C programming language
introduced a data type called float for storing real numbers; the name caught on and
was used by later languages as well. A more intuitive name might be real, which is
what they’re called in some languages, but the old C name of float is familiar and used
by Python and many other languages. So programmers will continue to use the word
float for real numbers, and people will still talk about “dialing” people on the phone
even if they’ve never touched a telephone dial.

Expressions

When you write programs, you will often need to include values and calculations.
The technical term for these elements is expressions.

Expression

A simple value or a set of operations that produces a value.

The simplest expression is a specific value, like 42 or 28.9. We call these “literal
 values,” or literals for short. More complex expressions involve combining simple
 values. Suppose, for example, that you want to know how many bottles of water you
have. If you have two 6-packs, four 4-packs, and two individual bottles, you can
 compute the total number of bottles with the following expression:

(2 * 6) + (4 * 4) + 2

M02_REGE5983_01_SE_C02.indd 59 14/06/2018 15:25

60 Chapter 2 Data and Definite Loops

Notice that we use an asterisk to represent multiplication and that we use parentheses
to group parts of the expression. The computer determines the value of an expression
by evaluating it.

Evaluation

The process of obtaining the value of an expression.

Operator

A special symbol (like + or *) that is used to indicate an operation to be per-
formed on one or more values.

The value obtained when an expression is evaluated is called the result. Complex
expressions are formed using operators.

The values used in the expression are called operands. For example, consider the fol-
lowing simple expressions:

3 + 29

4 * 5

The operators here are the + and *, and the operands are simple numbers.

 3 + 29

 | | |

operand operator operand

 | | |

 4 * 5

When you form complex expressions, these simpler expressions can in turn become
operands for other operators. For example, consider the following expression:

(3 + 29) - (4 * 5)

This expression has two levels of arithmetic operators:

 (3 + 29) - (4 * 5)

 | | | | | |

operand operator operand operand operator operand

 operator

M02_REGE5983_01_SE_C02.indd 60 14/06/2018 15:25

2.1 Basic Data Concepts 61

The addition operator has simple operands of 3 and 29 and the multiplication operator
has simple operands of 4 and 5, but the subtraction operator has operands that are each
parenthesized expressions with operators of their own. Thus, complex expressions can
be built from smaller expressions. At the lowest level, you have simple numbers. These
are used as operands to make more complex expressions, which in turn can be used as
operands in even more complex expressions.

There are many things you can do with expressions. One of the simplest things you
can do is to type expressions into the Python Shell, which causes the interpreter to
evaluate them and display their results. This is a great way to learn more about expres-
sions and operators:

>>> 1 + 1

2

>>> (3 + 29) - (4 * 5)

12

If you are writing a program to be saved in a file, you can print the result of an expres-
sion using a print statement. For example, the following three print statements pro-
duce the following three lines of output:

print(75)

print(2 + 2)

print((3 + 29) - (4 * 5))

75

4

12

Notice that for the second print, the computer evaluates the expression (adding 2
and 2) and prints the result (in this case, 4). For the third print, the computer evaluates
all of the arithmetic operators and prints the result. You will see many different opera-
tors as you progress through this book, all of which can be used to form expressions.
Expressions can be arbitrarily complex, with as many operators as you like. For that
reason, when we tell you, “An expression can be used here,” we mean that you can use
arbitrary expressions that include complex expressions as well as simple values.

The spacing in expressions is optional; you can write 3+4 or 3 + 4 and achieve the
same result. We prefer to put spaces between an operator and its operands, and that is the
style we’ll follow in this textbook. The designers of Python have written a Python offi-
cial style guide “PEP” that also recommends a single space on each side of an operator.

M02_REGE5983_01_SE_C02.indd 61 14/06/2018 15:25

62 Chapter 2 Data and Definite Loops

Literals

The simplest expressions refer to values directly using what are known as literals. An
integer literal (considered to be of type int) is a sequence of digits with or without a
leading + or - sign:

3 482 -29434 0 92348 +9812

A real number literal (considered to be of type float) is any number that includes a
decimal point:

298.4 0.284 207. .2843 42.0 -17.452 -.98

Notice that 207. and 42.0 are considered to be type float even though they coincide
with integers, because of the decimal point. Literals of type float can also be expressed
in scientific notation (a number followed by e followed by an integer):

2.3e4 1e-5 3.84e92 2.458e12

The first of these numbers represents 2.3 times 10 to the 4th power, which equals
23,000. Even though this value happens to coincide with an integer, it is considered
to be of type float because it is expressed in scientific notation. The second number
represents 1 times 10 to the negative 5th power, which is equal to 0.00001. The third
number represents 3.84 times 10 to the 92nd power. The fourth number represents
2.458 times 10 to the 12th power.

We have seen that textual information can be represented as strings that contain a
sequence of characters. Strings in quotation marks are considered literal values of type
str. In later chapters we will explore strings in more detail, including how to examine
and manipulate the characters of a string. As we saw previously, a string literal consists
of zero or more characters enclosed in single or double quotation marks:

'abc' "hello" "I'm happy!" 'Michael "Air" Jordan' "X" ""

Finally, the type bool stores logical information. We won’t be exploring the use of type
bool until we reach Chapter 4 and see how to introduce logical tests into our programs,
but for completeness, we include the bool literal values here. Logic deals with just two
possibilities: True and False. These two Python keywords are the two literal values
of type bool:

True False

Arithmetic Operators

The basic arithmetic operators are shown in Table 2.2. The addition and subtraction
operators will, of course, look familiar to you, as should the asterisk as a multiplication
operator and the forward slash as a division operator.

M02_REGE5983_01_SE_C02.indd 62 14/06/2018 15:25

2.1 Basic Data Concepts 63

The ** syntax for exponentiation may seem unusual, but the behavior matches what you
would expect. An expression such as 3 ** 5 means 35, or 3 raised to the 5th power,
which is 3 * 3 * 3 * 3 * 3, which evaluates to 243.

Division is the most complex of the basic arithmetic operations, so it deserves further
discussion. Dividing with the / operator produces a real number result represented as a
float value. The result will be of type float even if both operands are integers. The
following interaction in the Python Shell shows some examples of this:

Operator Meaning Example Result

+ addition 2 + 2 4

- subtraction 53 - 18 35

* multiplication 3 * 8 24

/ division 9 / 2 4.5

// integer division 9 // 2 4

% remainder or mod 19 % 5 4

** exponentiation 3 ** 4 81

Table 2.2 Arithmetic Operators in Python

>>> 11.0 / 4.0

2.75

>>> 1 / 2

0.5

>>> 12 / 2

6.0

>>> 119 / 5

23.8

>>> 119 // 5

23

>>> 119 % 5

4

But as we’ll see throughout this textbook, there are often situations where we want to
perform integer division and produce an integer (int) quotient. As you learned from
doing long division in school, the results of integer division can be expressed as two
integers, a quotient and a remainder:

119 divided by 5 = 23 (quotient) with 4 (remainder)

You can compute the integer quotient and remainder from division using the // and %
operators, respectively. Here are some examples in the Python Shell that show these
arithmetic operators:

M02_REGE5983_01_SE_C02.indd 63 14/06/2018 15:25

64 Chapter 2 Data and Definite Loops

These two division operators should be familiar if you recall how long-division calcula-
tions are performed. Consider the result you’d get when dividing 1079 by 34 longhand
on paper:

 31

34) 1079

 102

 59

 34

 __
 25

Here, dividing 1079 by 34 yields 31 with a remainder of 25. Using arithmetic operators,
the problem would be described like this:

1079 // 34 evaluates to 31

1079 % 34 evaluates to 25

It takes a while to get used to integer division in Python. When you are using the inte-
ger division operator (//), the key thing to keep in mind is that it truncates (discards)
anything after the decimal point. So, if you imagine computing an answer on a calcula-
tor, just think of ignoring anything after the decimal point, as shown in the following
examples in the Python Shell. Notice that the number is never rounded up; even if its
fractional component is above 0.5, the integer division result is always rounded down
by discarding the portion after the decimal point.

>>> 19 // 5 # 19 / 5 is 3.8 on a calculator

3

>>> 207 // 10 # 207 / 10 is 20.7 on a calculator

20

>>> 7 // 8 # 7 / 8 is 0.875 on a calculator

0

The operator % computes the remainder left over from integer division. It is usually
referred to as the “modulus” or “mod” operator. The mod operator lets you know how
much was left unaccounted for by the truncating // division operator. For example,
given the previous examples, you’d compute the mod results as shown in Table 2.3.

In each case, you figure out how much of the number is accounted for by the
truncating division operator. The mod operator gives you any excess (the remainder).
When you put this into a formula, you can think of the mod operator as behaving as
follows:

x % y = x - (x // y) * y

M02_REGE5983_01_SE_C02.indd 64 14/06/2018 15:25

2.1 Basic Data Concepts 65

It is possible to get a result of 0 for the mod operator. This happens when one number
divides evenly into another. For example, each of the following expressions evaluates
to 0 because the second number goes evenly into the first number:

Mod problem First divide
What does division
account for?

How much is left
over? Answer

19 % 5 19 // 5 is 3 3 * 5 is 15 19 - 15 is 4 4

207 % 10 207 // 10 is 20 20 * 10 is 200 207 - 200 is 7 7

7 % 8 7 // 8 is 0 0 * 8 is 0 7 - 0 is 7 7

Table 2.3 Examples of % Mod Operator

>>> 28 % 7

0

>>> 95 % 5

0

>>> 44 % 2

0

>>> 7 // 10 # numerator smaller than denominator

0

>>> 7 % 10

7

>>> 0 // 10 # numerator of 0

0

>>> 0 % 10

0

>>> 7 // 0 # denominator of 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

A few special cases are worth noting because they are not always immediately obvious
to novice programmers:

• Numerator smaller than denominator: In this case division produces 0 and mod
produces the original number.

• Numerator of 0: In this case both division and mod produce 0.

• Denominator of 0: In this case, both division and mod are undefined and produce
a runtime error. For example, a program that attempts to evaluate any of 7 / 0,
7 // 0, or 7 % 0 will produce an error.

The following interactions in the Python Shell demonstrate these special cases:

M02_REGE5983_01_SE_C02.indd 65 14/06/2018 15:25

66 Chapter 2 Data and Definite Loops

The mod operator has many useful applications in computer programs. Here are just
a few:

• Testing whether a number is even or odd (number % 2 is 0 for evens, and
 number % 2 is 1 for odds).

• Finding individual digits of a number (e.g., number % 10 is the final digit).

• Finding the last four digits of a social security number (number % 10000).

The remainder operator can be used with floats as well as with integers, and it works
similarly: You consider how much is left over when you take away as many “whole”
values as you can. For example, the expression 10.1 % 2.4 evaluates to 0.5 because
you can take away four 2.4 values from 10.1, leaving you with 0.5 left over. But the
use of % is much more common with integers than float values.

The integer division operator // can also be used with floats. It performs an exact
division but then truncates the fractional component, replacing it with .0. For example,
the expression 7.0 // 2.0 evaluates to 3.0.

Precedence

Python expressions are like complex noun phrases in English in that they are subject
to ambiguity. For example, consider the phrase, “the man on the hill by the river with
the telescope.” Is the river by the hill or by the man? Is the man holding the telescope,
or is the telescope on the hill, or is the telescope in the river? We don’t know how to
group the various parts together.

You can get the same kind of ambiguity if parentheses aren’t used to group the parts of
a Python expression. For example, the expression 2 + 3 * 4 has two operators. Which
operation is performed first? You could interpret this as (2 + 3) * 4, which would
evaluate to 5 * 4 or 20. Or it could be 2 + (3 * 4), which would be 2 + 12 or 14.

To deal with this kind of ambiguity, Python has a set of rules called precedence that
determine the order in which various parts of an expression will be grouped together
and evaluated.

Precedence

The binding power of an operator, which determines how to group and evalu-
ate parts of an expression.

The computer applies rules of precedence when the grouping of operators in an expres-
sion is ambiguous. An operator with high precedence is evaluated first, followed by
operators of lower precedence. Within a given level of precedence the operators are
evaluated in one direction, usually left to right.

M02_REGE5983_01_SE_C02.indd 66 14/06/2018 15:25

2.1 Basic Data Concepts 67

For the expressions we have seen, parentheses receive the highest level of prece-
dence. After that, the exponentiation operator ** has the highest precedence. The
multiplicative operators *, /, //, % are next, followed by the additive operators +
and -.

Table 2.4 lists these levels of precedence in descending order. (Placing a + or -
sign in front of a number is considered a “unary” operator that modifies only a single
operand, and those unary operators are listed in the table for completeness.) The order
of precedence is the same as in the “PEMDAS” acronym many students are taught
in school, short for “Parentheses, Exponents, Multiplication / Division, Addition /
Subtraction.”

Thus, the expression 2 + 3 * 4 is evaluated to 14 as follows:

Description Operators

exponentiation **

unary operators +, -

multiplicative operators *, /, //, %

additive operators +, -

Table 2.4 Python Operator Precedence

2 + 3 * 4

2 + 12

 14

Within the same level of precedence, arithmetic operators are evaluated from left to
right. This often doesn’t make a difference in the final result, but occasionally it does.
Consider, for example, the expression 40 - 25 - 9, which evaluates to 6 as follows:

40 - 25 - 9

 15 - 9

 6

The expression would produce a different result if the second subtraction were evalu-
ated first.

You can always override precedence with parentheses. For example, if you really
want the second subtraction to be evaluated first, you can force that to happen by

M02_REGE5983_01_SE_C02.indd 67 14/06/2018 15:25

68 Chapter 2 Data and Definite Loops

introducing parentheses and writing 40 - (25 - 9). The expression would then
evaluate as follows:

40 - (25 - 9)

40 - 16

 24

Another concept in arithmetic is unary plus and minus, which take a single operand, as
opposed to the binary operators we have seen thus far (e.g., *, /, and even binary + and -),
all of which take two operands. For example, we can find the negation of 8 by asking
for -8. These unary operators have a higher level of precedence than the multiplica-
tive operators. Consequently, we can form expressions like 12 * -8, which evaluates
to -96.

We will see many other types of operators in the next few chapters. As we intro-
duce more operators, we’ll update the precedence listing in Table 2.4 to include them
as well.

Before we leave this topic, let’s look at a complex expression and see how it is evalu-
ated step by step. Consider the following expression:

13 * 2 + 239 // 10 % 5 - 2 * 2

It has a total of six operators: two multiplications, one integer division, one mod,
one subtraction, and one addition. The multiplication, division, and mod operations
will be performed first, because they have higher precedence, and they will be per-
formed from left to right because they are all at the same level of precedence. Now
we evaluate the additive operators from left to right. The final result of the long
expression is 25.

13 * 2 + 239 // 10 % 5 - 2 * 2

 26 + 239 // 10 % 5 - 2 * 2

 26 + 23 % 5 - 2 * 2

 26 + 3 - 2 * 2

 26 + 3 - 4

 29 - 4

 25

M02_REGE5983_01_SE_C02.indd 68 14/06/2018 15:25

2.1 Basic Data Concepts 69

Mixing and Converting Types

You’ll often find yourself mixing values of different types and wanting to convert from
one type to another. Python has simple rules to avoid confusion and provides a mecha-
nism for requesting that a value be converted from one type to another.

Two types that are frequently mixed are ints and floats. You might, for example,
ask Python to compute 2 * 3.6. This expression includes the int literal 2 and the
float literal 3.6. In this case, Python converts the int into a float and performs the
computation entirely with float values. This is always the rule when Python encoun-
ters an int where it was expecting a float. These rules hold true even if there is an
equivalent int that could have been used to represent the result. For example, 2 * 3.0
evaluates to the float value of 6.0 and not the int value of 6.

The preceding is called an implicit conversion between types. But sometimes you
want to perform an explicit conversion between types, such as turning a float into an
int. You can ask Python for this conversion by writing the desired type name followed
by the value or expression to convert in parentheses. The general syntax template for
converting one type to another is:

type(expression)

Syntax template: Type conversion

For example, the expression int(4.75) will convert the float value of 4.75 into the
int value 4. When you convert a float value to an int, it does not round to the near-
est integer; it simply truncates anything after the decimal point. There is also a float
conversion that turns an integer value into a real number.

>>> int(4.75) # convert to int

4

>>> int(17.3)

17

>>> int(3.14159)

3

>>> float(42) # convert to float

42.0

Perhaps it’s unclear why you would want to explicitly convert 4.75 into 4.
Why not just write 4 in the code in the first place? The more likely case where
you’d use a type conversion is when you’re computing the result of a more complex
expression.

If you want to convert the result of an expression, you have to be careful to use the
parentheses properly. For example, suppose that you have some books that are each

M02_REGE5983_01_SE_C02.indd 69 14/06/2018 15:25

70 Chapter 2 Data and Definite Loops

0.15 feet wide and you want to know how many of them will fit in a bookshelf that is
2.5 feet wide. You could do a straight division of 2.5 / 0.15, but that evaluates to a
float result that is between 16 and 17. Americans use the phrase “16 and change” as
a way to express the idea that a value is larger than 16 but not as big as 17. Even if you
use the integer division // operator and write 2.5 // 0.15, the result is a float result
of 16.0. In this case, we don’t care about the “change”; we only want to compute the
16 part. You might form the following expression:

>>> int(2.5) / 0.15

13.333333333333334

>>> int(2.5 / 0.15)

16

Unfortunately, this expression evaluates to the wrong answer because the type
conversion is applied to whatever is in the parentheses (here, the value 2.5). This
converts 2.5 into the integer 2, divides by 0.15, and evaluates to 13 and change,
which isn’t an integer and isn’t the right answer. Instead, you want to form this
expression:

This expression first performs the division to get 16 and change, and then converts
that value to an int by truncating it. It thus evaluates to the int value 16, which is the
answer you’re looking for.

Some languages call a conversion between types a type cast, as in, “casting a value
in a different light.”

2.2 Variables

As you write larger programs with data and expressions, you will find that you end up
with calculations that you want to use multiple times in your program. For example,
you might write the following code to calculate the cost of some purchased items before
and after taxes:

cost of items before/after 10% tax

print("Subtotal:")

print(30 + 22 + 17 + 46)

Continued on next page

M02_REGE5983_01_SE_C02.indd 70 14/06/2018 15:25

2.2 Variables 71

print("Taxes:")

print((30 + 22 + 17 + 46) * 0.1)

print("Total:")

print((30 + 22 + 17 + 46) * 1.10)

Variable

A memory location with a name that stores a value.

Subtotal:

115

Taxes:

11.5

Total:

125.5

Variable Definition

A request to set aside memory for a new variable with a given name and
value.

Notice that the subtotal amount of (30 + 22 + 17 + 46) is used three times in the
code, which is redundant. We’d like to eliminate the redundancy by calculating the
subtotal amount a single time and then referring to the resulting value throughout the
code. Python has a feature called variables that is made for just this kind of situation. A
variable is a location in the computer’s memory that is given a name and a value. The
program can store a value and retrieve it for use later.

Continued from previous page

Think of the computer’s memory as being like a giant spreadsheet that has many cells
where data can be stored. When you create a variable in Python, you are asking it to
set aside one of those cells for this new variable. When you define the variable, you
store an initial value in the cell. And as with a spreadsheet, you will have the option to
change the value in that cell later.

When you create a variable, you have to decide on a name to use to refer to this mem-
ory location. The normal rules of Python identifiers apply (the name must start with a let-
ter or underscore, which can be followed by any combination of letters, underscores, and
digits). The standard convention in Python is for variable names to consist of lowercase
letters, as in number or digits. If you want a multi-word variable name, place an under-
score in front of any subsequent words, as in number_of_students or average_age.

To use a variable in a Python program, they must state its name and the value you
want to store in it. The line of code that creates a variable and gives a value to it is called
a variable definition.

M02_REGE5983_01_SE_C02.indd 71 14/06/2018 15:25

72 Chapter 2 Data and Definite Loops

A variable definition uses the following syntax:

name = expression

When the Python interpreter reaches a variable definition, it first calculates the result
of the expression on the right side of the = sign. Then it stores that value into the com-
puter’s memory and associates it with the name on the left side of the = sign.

Once you have defined a variable, you can use that variable in your code. If you write
the variable’s name in an expression, it is equivalent to writing the value stored in that
variable. For example, the following code has the same output as the previous code but
uses a variable named subtotal to store the cost of the items rather than rewriting and
recalculating that expression three times:

cost of items before/after 10% tax (using a variable)

subtotal = 30 + 22 + 17 + 46

print("Subtotal:")

print(subtotal)

print("Taxes:")

print(subtotal * 0.1)

print("Total:")

print(subtotal * 1.10)

You can also try out variables in the Python Shell. If you define a variable and then type
its name afterward, the shell will report its value to you:

>>> x = 1 + 1

>>> x

2

>>> y = x + 3

>>> y

5

>>> x * 3 + y

11

bug: try to print a variable

that has not been defined

print("The value of x is:")

print(x)

It is an error to refer to a variable that has not been defined. If there is no variable named
x, the following code will result in an error:

M02_REGE5983_01_SE_C02.indd 72 14/06/2018 15:25

2.2 Variables 73

One very common variable definition statement that points out the difference between
algebraic relationships and program statements is:

x = x + 1

Remember not to think of this as “x equals x + 1.” There are no numbers that satisfy
that mathematical equation. We read this as, “x’s value should be updated to become
the value of x plus one.” This may seem a rather odd statement, but you should be able
to decipher it given the rules outlined earlier. Suppose that the current value of x is 19.
To execute the statement, you first evaluate the expression to obtain the result 20. The
computer stores this value in the variable named on the left, x. Thus, this statement
adds one to the value of the variable. We refer to this as incrementing the value of x.
It is a fundamental programming operation because it is the programming equivalent
of counting (1, 2, 3, 4, and so on). The following statement is a variation that counts
down, which we call decrementing a variable:

x = x - 1 # decrement a variable (decrease its value)

We will discuss incrementing and decrementing in more detail later in the following
section.

You can also define several variables in a single statement. The syntax is to write
their names separated by commas, followed by an equals sign, followed by their values
in the same order separated by commas:

name, name, ..., name = expression, expression, ..., expression

Syntax template: Defining multiple variables in a single statement

The following example defines three variables named height, weight, and age. It sets
height to store 70, sets weight to store 195, and sets age to store 40.

define several variables and set their values

height, weight, age = 70, 195, 40

The authors find the preceding syntax hard to read and prefer to define only a single
variable on each line.

The value of x is:

Traceback (most recent call last):

 File "undefined.py", line 7, in <module>

 main()

 File "undefined.py", line 5, in main

 print(x)

NameError: name 'x' is not defined

M02_REGE5983_01_SE_C02.indd 73 14/06/2018 15:25

74 Chapter 2 Data and Definite Loops

A Program with Variables

To explore more uses of variables, let’s examine a larger program that computes a value
called the basal metabolic rate (BMR), which is the number of calories a person burns
in 24 hours if their body is completely at rest. Of course, a person does not remain com-
pletely at rest for 24 straight hours, and an active person burns more calories in a day than
their BMR. But BMR can still be an interesting estimation of a lower bound for the mini-
mum number of calories a person would need to eat in a day to sustain their vital organs.

Given an individual’s height, weight, age, and sex, we can compute that person’s
BMR using the following formulas:

• men: BMR = 10 * (weight in kg) + 6.25 * (height in cm)
- 5 * (age in years) + 5

• women: BMR = 10 * (weight in kg) + 6.25 * (height in cm)
- 5 * (age in years) - 161

Or if you use American units of measurement, as we’ll do in the rest of this section, the
formulas are the following:

• men: BMR = 4.54545 * (weight in lb) + 15.875 * (height in inches)

- 5 * (age in years) + 5

• women: BMR = 4.54545 * (weight in lb) + 15.875 * (height in inches)
- 5 * (age in years) - 161

The height, weight, and age are important parts of the BMR formula. A program to
calculate BMR, then, would naturally have three variables for these three pieces of
information. There are several details that we need to discuss about variables, but it can
be helpful to look at a complete program first to see the overall picture. The following
program computes and prints the BMR for a 40-year-old male and female who are
5 feet 10 inches tall and weigh 195 pounds:

 1 # This program calculates a person's Basal Metabolic Rate (BMR),

 2 # which is the number of calories burned when at rest for 24 hours.

 3

 4 def main():

 5 # define variables

 6 height = 70

 7 weight = 195

 8 age = 40

 9

10 # compute BMR for male and female

11 bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

12 bmr_f = 4.54545 * weight + 15.875 * height - 5 * age - 161

13

Continued on next page

M02_REGE5983_01_SE_C02.indd 74 14/06/2018 15:25

2.2 Variables 75

14 # print results

15 print("Your Basal Metabolic Rate (BMR) is the number")

16 print("of calories that your body burns when you are")

17 print("at rest for 24 hours.")

18 print()

19 print("Current BMR (male):")

20 print(bmr_m)

21 print("Current BMR (female):")

22 print(bmr_f)

23

24 main()

Notice that the program includes blank lines to separate the sections and comments
to indicate what the different parts of the program do. It produces the following
output:

Your Basal Metabolic Rate (BMR) is the number

of calories that your body burns when you are

at rest for 24 hours.

Current BMR (male):

1802.61275

Current BMR (female):

1636.61275

height 70 weight 195 age 40

Let’s now examine the details of this program to understand how its variables work. For
example, in the following code, the first line defines a variable named height and sets
its value to 70. The second line defines a variable named weight and sets its value to
195. The third line defines a variable named age and sets its value to 40.

height = 70

weight = 195

age = 40

Once a variable is defined, Python sets aside a memory location to store its value. Our
variable definition stores the value 70 in the memory location for the variable height,
indicating that this person is 70 inches tall (5 feet 10 inches).

We sometimes draw pictures of variables as boxes to indicate the memory used for
them, with the variable’s value inside the box. After the Python interpreter executes the
three statements above, the memory looks like this:

Continued from previous page

M02_REGE5983_01_SE_C02.indd 75 14/06/2018 15:25

76 Chapter 2 Data and Definite Loops

You can think of a variable as being a named alias for a given value. By setting height
to be 70, you can now refer to height later in your program and the program will
substitute the value 70 in its place.

Variable definitions can appear anywhere a statement can occur. Every variable
stores a value of a particular type. Our variable named height stores the value 70,
which is of type int. We don’t have to explicitly write the type of the variable in the
code; the Python interpreter figures it out based on the context of the code. Some other
programming languages require the programmer to explicitly specify what type of data
the variable will hold, but Python does not.

The value stored in a variable does not have to be a simple literal value. You can
write a more complex expression; that expression will be evaluated, and its result will
be stored into the variable. For example, the following variable definition defines the
variable height to store the value 77:

height = 44 + 3 * 11

When the statement executes, the computer first evaluates the expression on the right
side of the = sign; then, it stores the result in the memory location for the given variable.
The next two lines of our program contain two more definitions for variables named
bmr_m and bmr_f. These definitions each use a formula (an expression to be evaluated):

bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

bmr_f = 4.54545 * weight + 15.875 * height - 5 * age - 161

The Python interpreter calculates the value of each expression and stores the result into
each variable. When the expression refers to a variable such as weight, height, or age,
the interpreter substitutes the value of that variable as defined previously. All of the same
operator behavior and precedence still apply when using variables in an expression.
The following diagram breaks down the evaluation of the value for the bmr_m variable:

 | | |
bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

 886.36275 + 15.875 * height - 5 * age + 5

 886.36275 + 1111.25 - 5 * age + 5

 886.36275 + 1111.25 - 200 + 5

 1997.61275 - 200 + 5

 1797.61275 + 5

bmr_m = 1802.61275

195 70 40

M02_REGE5983_01_SE_C02.indd 76 14/06/2018 15:25

2.2 Variables 77

So, after the computer has executed the bmr_m variable definition, the memory looks
like this:

Initialization

Defining a variable for the first time in your program.

Assignment

Storing a new value into an already existing variable, replacing the previous
value.

For example, consider the following variation of the BMR program, which computes a
new BMR for a male user, assuming the person lost 15 pounds (going from 195 pounds
to 180 pounds).

 1 # This program calculates a male user's Basal Metabolic Rate

 2 # (BMR) both before and after losing 15 pounds.

 3

 4 def main():

 5 # define variables

 6 height = 70

 7 weight = 195

 8 age = 40

 9

Continued on next page

The bmr_f variable is calculated in a similar way. The last lines of the program report
the BMR result using print statements:

print("Current BMR (male):")

print(bmr_m)

print("Current BMR (female):")

print(bmr_f)

Notice that we can include a variable in a print statement the same way that we include
literal values and other expressions to be printed.

As its name implies, a variable can take on different values at different times. The
first time a variable is defined is called an initialization, while a change to the value of
a variable is called an assignment.

height 70 weight 195 age 40 bmr_m 1802.61275

M02_REGE5983_01_SE_C02.indd 77 14/06/2018 15:25

78 Chapter 2 Data and Definite Loops

10 # compute and print BMR for male user before weight loss

11 bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

12 print("Previous BMR (male):")

13 print(bmr_m)

14

15 # compute and print BMR for male user after weight loss

16 weight = 180

17 bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

18 print("Current BMR (male):")

19 print(bmr_m)

20

21 main()

The program begins the same way, setting the variables to the following values and
reporting this initial value for the male BMR:

Continued from previous page

height 70 weight 195 age 40 bmr_m 1802.61275

But the new program then includes the following definition:

weight = 180

This changes the value of the weight variable:

height 70 weight 180 age 40 bmr_m 1802.61275

You might think that this would also change the value of the bmr_m variable. After all,
earlier in the program we said that the following should be true:

bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

This is a place where the spreadsheet analogy is not as accurate. A spreadsheet can store
formulas in its cells and when you update one cell it can cause the values in other cells
to be updated. The same is not true in Python.

You might also be misled by the use of an equals sign for assignment. Don’t confuse
this statement with a statement of equality. The assignment statement does not represent
an algebraic relationship. In algebra, you might say:

x = y + 2

M02_REGE5983_01_SE_C02.indd 78 14/06/2018 15:25

2.2 Variables 79

In mathematics you state definitively that x is equal to y plus two, a fact that is true now
and forever. If x changes, y will change accordingly, and vice versa. Python’s variable
definition statement is very different.

The definition statement is a command to perform an action at a particular point
in time. It does not represent a lasting relationship between variables. That’s why we
usually say “stores” or “becomes” rather than saying “equals” when we read variable
definition statements.

Getting back to the program, resetting the variable called weight does not reset the
variable called bmr_m. To recompute bmr_m based on the new value for weight, we
must include the second assignment statement:

weight = 180

bmr_m = 4.54545 * weight + 15.875 * height - 5 * age + 5

Otherwise, the variable bmr_m would store the same value as before. That would be an
incorrect outcome to report to someone who’s just lost 15 pounds. By including both
of these statements, we reset both the weight and bmr_m variables so that memory
looks like this:

Previous BMR (male):

1802.61275

Current BMR (male):

1734.431

Increment/Decrement Operators

In addition to standard assignment with =, Python has several special operators that are
useful for a particular family of operations that are common in programming. As we men-
tioned earlier, you will often find yourself increasing the value of a variable by a particular
amount, an operation called incrementing. You will also often find yourself decreas-
ing the value of a variable by a particular amount, an operation called decrementing.
To accomplish this, you write statements like the following:

x = x + 1

y = y - 1

z = z + 2

height 70 weight 180 age 40 bmr_m 1734.431

The output of the new version of the program is:

M02_REGE5983_01_SE_C02.indd 79 14/06/2018 15:25

80 Chapter 2 Data and Definite Loops

Likewise, you’ll frequently find yourself wanting to double or triple the value of a
variable or to reduce its value by a factor of 2, in which case you might write code like
the following:

x = x * 2

y = y * 3

z = z // 2

Python has a shorthand for these situations. You glue together the operator character
(+, -, *, etc.) with the equals sign to get a special assignment operator (+=, -=, *=,
etc.). This variation allows you to rewrite assignment statements like the previous ones
as follows:

x += 1

y -= 1

z += 2

x *= 2

y *= 3

z //= 2

This convention is yet another detail to learn about Python, but it can make the code
easier to read. Think of a statement like x += 2 as saying, “add 2 to x.” That’s more
concise than saying x = x + 2.

Some other languages have special operators ++ and -- for the operation of incre-
menting or decrementing a variable by 1. (The C++ language got its name because it
is one “increment” above its predecessor language, C.) Python does not include ++ or
-- operators because the language designers felt the existing += and -= operators were
more clear.

Printing Multiple Values

You saw in Chapter 1 that you can output string literals using print. You can also
output numeric expressions and variables’ values using print. The statement in the
following code causes the interpreter first to evaluate the expression, which yields the
value 14, and then to write that value to the console window.

print(12 + 3 - 1)

You have also seen that you can also include the value of a variable in a print state-
ment. The following code prints the number of years until a person of a given age can
retire from their job at age 65:

age = 40

years_until_retirement = 65 - age

Continued on next page

M02_REGE5983_01_SE_C02.indd 80 14/06/2018 15:25

2.2 Variables 81

print("You will retire in this many years:")

print(years_until_retirement)

You will retire in this many years:

25

You will retire in 25 years.

You will retire in 25 years.

print("You will retire in, years_until_retirement, years.")

You’ll often want to output more than one value on a line, such as a variable or expres-
sion’s value with text before it. In our preceding example it might be better to print the
retirement information on a single line, such as:

To do so, Python allows you to supply multiple values in a print statement, separated
by commas. All of the values or expressions you provide will be printed, with a blank
space between them. The general syntax is the following:

print(expression, expression, ..., expression)

Syntax template: Printing multiple values

For example, to print the desired single line of retirement output, we can write:

age = 40

years_until_retirement = 65 - age

print("You will retire in", years_until_retirement, "years.")

You need to pay close attention to the quotation marks and commas in a line like this to
keep track of which parts are “inside” a string literal and which are outside. This line of
output begins with the text “You will retire in”, then a space, then the value of the vari-
able years_until_retirement, then another space, and finally the text “years.” By
contrast, the following line is incorrect and does not insert the variable’s value because
it is inside the quotation marks of the string:

Providing multiple values in a print statement is related to the concept of function
parameters, which we will discuss in detail in the next chapter. You will often use the

Continued from previous page

M02_REGE5983_01_SE_C02.indd 81 14/06/2018 15:25

82 Chapter 2 Data and Definite Loops

multiple-value print syntax in conjunction with variables. For example, consider the
following program that computes the number of hours, minutes, and seconds in a stan-
dard year: Notice that the three print commands at the end each have a string literal
followed by a comma and a variable name.

 1 def main():

 2 hours = 365 * 24

 3 minutes = hours * 60

 4 seconds = minutes * 60

 5

 6 print("Hours in a year =", hours)

 7 print("Minutes in a year =", minutes)

 8 print("Seconds in a year =", seconds)

 9

10 main()

Hours in a year = 8760

Minutes in a year = 525600

Seconds in a year = 31536000

(8 , 19 , 23)

You can print arbitrarily complex expressions. For example, if you had variables named
x, y, and z, you might want to display their values in coordinate format with parentheses
and commas as shown in the following code. Notice the careful placement of quotation
marks and commas. If x, y, and z had the values 8, 19, and 23, respectively, this state-
ment would produce the following output:

print("(", x, ",", y, ",", z, ")")

By default the multiple values in a print statement are separated by single spaces. If
you want to change the separator between values, you can do so using a special syntax.
Just before the closing) parenthesis in the print statement, you write sep= followed
by the string to print between the multiple values. The general syntax is the following:

print(expression, expression, ..., expression, sep="text")

Syntax template: Printing with a custom separator between values

For example, to print a date in year / month / day format, you could write the follow-
ing code:

M02_REGE5983_01_SE_C02.indd 82 14/06/2018 15:25

2.3 The for Loop 83

year = 2021

month = 1

day = 20

print("Today is", year, month, day, sep="/")

Today is 2021/1/20

Today is 2021/1/20

We won’t use the sep= syntax much in this text, but it is useful in the cases where you
need precise control over your output format.

Another syntax for printing multiple values is to use the str function, which con-
verts any value into a string, and then concatenate these strings together using + opera-
tors. The following code is equivalent to the previous example but using str:

year = 2021

month = 1

day = 20

print("Today is " + str(year) + "/" + str(month) + "/" + str(day))

The authors prefer to avoid the use of str in most cases and will tend to favor
the comma-separated style whenever reasonably possible. But you may see code
examples online and in other texts that use str heavily, partly because the str style
is more similar to the way multiple values are printed in other languages such as Java
and C++.

2.3 The for Loop

Programming often involves specifying redundant tasks. The for loop helps to avoid
such redundancy by repeatedly executing a sequence of statements over a particular
range of values.

Suppose you want to write a program that repeats a printed message several times,
like a chant being repeated by sports fans at your university. If your school’s team is
the Wildcats, you could write a program like this:

1 # This program prints a repeating chant.

2 def main():

3 print("Go, Cats, Go!")

4 print("Go, Cats, Go!")

Continued on next page

M02_REGE5983_01_SE_C02.indd 83 14/06/2018 15:25

84 Chapter 2 Data and Definite Loops

5 print("Go, Cats, Go!")

6 print("Go, Cats, Go!")

7 print("BEAR DOWN!")

8

9 main()

The program produces the following output:

Go, Cats, Go!

Go, Cats, Go!

Go, Cats, Go!

Go, Cats, Go!

BEAR DOWN!

This code approach is tedious because the program has four print statements that are
exactly the same. You could put the print statement into a function and call that func-
tion four times instead, but now the function calls themselves are redundant. The more
repeated copies of the chant, the worse this redundancy would get.

Python’s for loop is made for exactly this kind of situation. A for loop is a state-
ment that instructs the interpreter to execute a line or lines a given number of times.
The for loop has the following general syntax:

for name in range(max):

 statements

Syntax template: for loop

For example, to print the same output as the previous program with a for loop, you
could write the following code:

1 # This program prints a repeating chant using a for loop.

2 def main():

3 for i in range(4):

4 print("Go, Cats, Go!")

5 print("BEAR DOWN!")

6

7 main()

An oversimplified mental model of the for loop is, whatever number you write in the
parentheses after range is the number of times the statement in the loop will repeat.
If you changed the preceding program to say range(10), the message would print
10 times. Notice that the last line printing “BEAR DOWN!” is not indented; it is not
part of the for loop and will print only a single time.

Continued from previous page

M02_REGE5983_01_SE_C02.indd 84 14/06/2018 15:25

You can try out for loops in the Python Shell. If you type the loop’s header and press
Enter, the shell will show a second line with a “...” in front of it, and you can type the
loop’s indented body on that line. After typing a blank line, the shell will run the loop
and display its output:

>>> for i in range(3):

... print("Hello, Python Shell")

...

Hello, Python Shell

Hello, Python Shell

Hello, Python Shell

Control Structure

A syntactic structure that controls other statements.

The for loop is the first example of a control structure that we will study. A control
structure is a language element that controls other statements.

The initial line that contains the word for is called the header or heading of the loop,
and the indented statement or statements being repeated are called the body of the loop.
A for loop can repeat one statement or multiple statements. For example, the following
program has a for loop containing two statements:

 1 # This program prints part of a song.

 2 # It demonstrates a for loop with two lines in its body.

 3

 4 def main():

 5 print("My Coding Song:")

 6 for i in range(3):

 7 print("'C' is for 'Coding'")

 8 print("That's good enough for me!")

 9 print("Oh!")

10 print("Coding, Coding, Coding starts with 'C'!")

11 main()

The print statement that comes before the for loop, and the two print state-
ments after the for loop, will not be repeated. These statements are not indented

2.3 The for Loop 85

M02_REGE5983_01_SE_C02.indd 85 14/06/2018 15:25

86 Chapter 2 Data and Definite Loops

and are not included as part of the loop’s body. The program produces the follow-
ing output:

My Coding Song:

'C' is for 'Coding'

That's good enough for me!

'C' is for 'Coding'

That's good enough for me!

'C' is for 'Coding'

That's good enough for me!

Oh!

Coding, Coding, Coding starts with 'C'!

Notice the order of the lines in the output. The two indented lines inside the for
loop are repeated three times. The repeated lines appear in pairs; it prints the first
line, then the second line, then the first, then the second, and so on.

Be careful to use consistent indentation to indicate controlled statements. All con-
secutive indented lines after the loop header are considered to be part of the body of
that loop.

A program can contain multiple for loops. The following new version of our song
program produces similar output to the original, but with two repetitions of the final
line of the song:

 1 # This program prints part of a song.

 2 # It demonstrates a for loop with two lines in its body.

 3

 4 def main():

 5 print("My Coding Song:")

 6 for i in range(3):

 7 print("'C' is for 'Coding'")

 8 print("That's good enough for me!")

 9 print("Oh!")

10 for i in range(2):

11 print("Coding, Coding, Coding starts with 'C'!")

12

13 main()

M02_REGE5983_01_SE_C02.indd 86 14/06/2018 15:25

Common Programming Error

Forgetting to Indent

You should use indentation to indicate the body of a for loop. If you intend to have
a loop that contains two statements, it’s easy to forget the additional lines of the
body after the first one. Suppose, for example, that you want to print 20 alternating
copies of the strings “Hi!” and “Ho!”. You might mistakenly write the following
incorrect code:

for i in range(20):

 print("Hi!")

print("Ho!")

The indentation indicates to the interpreter which statements are part of the loop
body. Since we did not indent the second print statement, it is not included in the
loop body and is therefore not repeated. The code would produce 20 lines of output
that all say “Hi!” followed by one line of output that says “Ho!” To include both
print statements in the loop body and therefore repeat both of them, you need to
indent both lines:

for i in range(20):

 print("Hi!")

 print("Ho!")

Using a Loop Variable

A for loop can help you write code to process a range of numbers. We’ll take advantage
of that in this next program. Suppose you want to write out the squared values of the
integers 0 through 5. You could write a redundant program like this:

1 def main():

2 print(0, "squared =", 0 * 0)

3 print(1, "squared =", 1 * 1)

4 print(2, "squared =", 2 * 2)

5 print(3, "squared =", 3 * 3)

6 print(4, "squared =", 4 * 4)

7 print(5, "squared =", 5 * 5)

8

9 main()

2.3 The for Loop 87

M02_REGE5983_01_SE_C02.indd 87 14/06/2018 15:25

88 Chapter 2 Data and Definite Loops

But this approach is tedious because the program has six statements that are very simi-
lar. They are all of the form:

print(number, "squared =", number * number)

In this case, number is either 0, 1, 2, 3, 4, or 5. What we are really trying to say here
is, “execute this print statement for each of the values 0 through 5.” The for loop can
help us do exactly that.

What a for loop actually does is to execute a piece of code once for each element
in a range of integers. The expression range(max) includes the range of integers that
begins with 0 and ends just before max. For example, the expression range(4) includes
0, 1, 2, and 3, but not 4 itself. Note that range(max) is a range that contains exactly
max integers in it.

The for loop also contains a name that we have called i in our examples. The i here
is an example of a loop variable (also called a control variable), which is a special
variable that exists inside a loop that you can use in the loop’s code.

Loop Variable

The variable defined in the heading of a for loop, which can be used in the
loop’s code and changes on each repetition of the loop.

0 squared = 0

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

5 squared = 25

When we say the following, the loop executes the statement once for each integer in
the range, temporarily storing that integer as a variable named i:

for i in range(max):

 statement

• Define a variable named i storing the value 0, then run the statement.

• Now assign i to be 1, then run the statement again.

• Now assign i to be 2, then run the statement again.

• ...

• Now assign i to be max - 2, then run the statement again.

• Now assign i to be max - 1, then run the statement again.

M02_REGE5983_01_SE_C02.indd 88 14/06/2018 15:25

The for loop is running the code once for each number in the range 0 through 4, refer-
ring to that number as i each time. Figure 2.1 shows essentially what the for loop
expands to become when it executes.

Each execution of the controlled statement of a loop is called an iteration of the loop,
as in, “The loop finished executing after four iterations.” Iteration also refers to looping
in general, as in, “I solved the problem using iteration.”

With all of this in mind, here is a version of our squared numbers program that uses
a for loop to eliminate the redundant statements:

1 def main():

2 for i in range(6):

3 print(i, "squared =", i * i)

4

5 main()

All of our examples have used a loop variable named i. But the loop variable’s name
can be any legal identifier. By convention, we often use names like i, j, and k for
loop variables because those names are short and meaningless. But if the numbers
you are printing represent something important, you can give the loop variable a more

0

1

2

3

4

The key insight about a loop variable is that you can use it in the statement inside the
loop. For example, consider the following code:

for i in range(5):

 print(i)

2.3 The for Loop 89

Figure 2.1 Expansion of for loop using loop variable i

 i = 0
 print(i)
 i = 1
 print(i)
for i in range(5): i = 2
 print(i) print(i)
 i = 3
 print(i)
 i = 4
 print(i)

M02_REGE5983_01_SE_C02.indd 89 14/06/2018 15:25

90 Chapter 2 Data and Definite Loops

descriptive name, such as a or z_coordinate or student_id. Here is an example of
a for loop with a loop variable named num:

loop with 'num' as variable name instead of 'i'

for num in range(10):

 print(num)

Details about Ranges

The for loops we have written interacted with ranges of numbers produced from a com-
mand called range. The range command is actually a function that your code calls that
creates a range of numbers for your program to process. The form we have seen so far
was to supply a maximum integer in parentheses, which would produce a range from 0
(inclusive) through that maximum (exclusive). But there are situations where you don’t
want to start at 0, and/or when you don’t want to process every integer in the range. In
such cases you can supply additional information to the range function to customize the
range of numbers produced. Table 2.5 shows the various forms of the range function.

For example, if you want to print the integers 1–10 inclusive, you could write the
following code. Note that the max is exclusive, so we write 11 if we want 10 to be the
last number included in the range.

print the integers 1-10

for i in range(1, 11):

 print(i)

There is also a form of range where you supply a minimum value, a maximum value,
and a step value to indicate how much the loop variable should increase on each itera-
tion. For example, if the step is 2, the loop will process the numbers min, min+2,
min+4, The following code prints a sequence of numbers in a song:

range with a step of 2

for i in range(2, 9, 2):

 print(i)

print("Who do we appreciate?")

Range Form Description Example Numbers in Range

range(max) range from 0 (inclusive) to

max (exclusive)

range(5) 0, 1, 2, 3, 4

range(min, max) range from min (inclusive) to max

(exclusive)

range(3, 7) 3, 4, 5, 6

range(min, max, step) range from min (inclusive) to max

(exclusive), increasing by step

each time

range(4, 22, 3) 4, 7, 10, 13, 16, 19

Table 2.5 Ways to Create Ranges

Continued on next page

M02_REGE5983_01_SE_C02.indd 90 14/06/2018 15:25

The for loop is running the code once for each number in the range 2 (inclusive)
through 9 (exclusive, meaning that the range stops at 8), stepping upward by 2 each
time. The code refers to each number as i. In a previous section we showed an expan-
sion of a basic for loop; Figure 2.2 shows a similar expansion of this loop.

Sometimes we want to process a range of numbers in reverse order, counting down
rather than up. You can achieve this by providing a negative number as the step to your
range. You can accomplish this by using a decrement rather than an increment, so we
sometimes refer to this as a decrementing loop. For example, the following code counts
down from 5 to 1. Notice that the second value is written as 0 rather than 1, to make
sure that 1 is included in the range.

range with a negative step (count down)

for i in range(5, 0, -1):

 print(i)

print("Kaboom!")

2

4

6

8

Who do we appreciate?

5

4

3

2

1

Kaboom!

2.3 The for Loop 91

Continued from previous page

Figure 2.2 Expansion of for loop with a step

 i = 2
 print(i)
 i += 2
 print(i)
for i in range(2, 9, 2): i += 2
 print(i) print(i)
 i += 2
 print(i)
 i += 2
 print(i)

M02_REGE5983_01_SE_C02.indd 91 14/06/2018 15:25

92 Chapter 2 Data and Definite Loops

The values used in the range do not have to be integer literals. You can write any arbi-
trary integer expression:

range using variables and expressions

a = 17

b = 2

c = 3

for i in range(c, a + 1, b * 2):

 print(i)

3

7

11

15

42

This loop will use a min of 3, a max of 18, and a step of 4, producing the integers 3,
7, 11, 15.

It is also possible to provide a combination of integers that iterates only once, or no
times at all. The following range contains only a single integer, the number 42, so the
loop prints only a single line of output:

range containing a single value

for i in range(42, 43):

 print(i)

The following range does not contain any integers at all, so no output is produced. This
loop performs no iterations at all. It will not cause an error; it just won’t execute the
print statement in the loop body.

empty range (prints no output)

for i in range(7, 7):

 print(i)

The integers we write inside the parentheses when creating a range are called
 parameters. Parameters are values that are provided to a function that modify or
 customize its behavior. In this case, the numbers we write in the parentheses customize
the range of numbers that the function creates. We will explore parameters in much
more detail in the next chapter.

M02_REGE5983_01_SE_C02.indd 92 14/06/2018 15:25

Common Programming Error

Float as Range Boundary

Many students who are new to for loops accidentally try to loop over a non-integer
range. The range function raises an error if you write a real number as the range
boundary:

>>> range(3.14159)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'float' object cannot be interpreted as an integer

The more subtle and common case is when the student computes the loop boundary
using expressions on variables. It is easy to forget that the / operator on integers

Common Programming Error

Off-By-One Bug (OBOB) in Range Boundary

The fact that Python’s range function has an inclusive min value and an exclusive
max value is hard to remember for new programmers. This can lead to frequent
bugs where your code loops over a range of numbers that is off by 1 from the cor-
rect range. We find that students are especially likely to make this mistake when
using the form of range where you supply both a minimum and maximum value.
For example, if you want to print the integers from 1 through 4 inclusive, you might
write the code below:

print integers from 1-4 inclusive (correct)

for i in range(1, 5):

 print(i)

print integers from 1-4 inclusive (incorrect!)

for i in range(1, 4):

 print(i)

Continued on next page

2.3 The for Loop 93

1

2

3

When writing these kinds of loops, remember that if you want to include a value
max in your output, your loop must specify its maximum value as max + 1.

M02_REGE5983_01_SE_C02.indd 93 14/06/2018 15:25

94 Chapter 2 Data and Definite Loops

>>> "Go Cats " * 4

"Go Cats Go Cats Go Cats Go Cats "

>>> "x" * 10

produces a float result, not int. The following code crashes because the variable
class_size is a float with the value 5.4, which is not a valid range boundary:

 1 # This buggy program contains a for loop that uses

 2 # a float value as its loop range boundary.

 3 def main():

 4 courses = 5

 5 students = 27

 6 class_size = students / courses

 7

 8 for i in range(class_size):

 9 print(i)

10

11 main()

Traceback (most recent call last):

 File "float_loop.py", line 11, in <module>

 main()

 File "float_loop.py", line 8, in main

 for i in range(class_size):

TypeError: 'float' object cannot be interpreted as an integer

The program will work properly if you convert the class size to an int explicitly,
and/or if you use the // operator when dividing integers.

Continued from previous page

String Multiplication and Printing Partial Lines

We have talked about the * operator for performing multiplication on integers and real
numbers. Interestingly, Python also allows you to use * on a string, which replicates
the string a given number of times:

"text" * int

Syntax template: String multiplication

This operation is called string multiplication. For example, the expression "hello" * 3
replicates the string "hello" three times, evaluating to a result of "hellohellohello".
The following interaction in the Python Shell shows more examples:

M02_REGE5983_01_SE_C02.indd 94 14/06/2018 15:25

You can print a multiplied string to see repeated text patterns in the program’s output.
For example:

print("hello" * 3)

"xxxxxxxxxx"

>>> "Python" * 1

"Python"

>>> "times zero!" * 0

""

hellohellohello

If you want to repeat part of a line of output, you can use the syntax shown in this
chapter where multiple comma-separated values are provided in a print statement.
For example, in the following song code, the word “la” needs to be repeated, but the
initial word “Fa” does not. So we supply them separately with commas in the print
statement on that line of output:

print("Deck the halls with boughs of holly")

print("Fa", "la " * 8)

Deck the halls with boughs of holly

Fa la la la la la la la la

You can use the combination of for loops and string multiplication to produce interest-
ing patterns of characters. For example, the following code prints five lines of output,
each of which contains ten # characters. Notice that we name our loop variable line
here because each iteration of the loop produces a line of a figure:

for line in range(5):

 print("#" * 10)

##########

##########

##########

##########

##########

2.3 The for Loop 95

M02_REGE5983_01_SE_C02.indd 95 14/06/2018 15:25

96 Chapter 2 Data and Definite Loops

You can use the loop variable to alter the number of characters printed. In the previous
code, the for loop always does exactly the same thing: It prints exactly 10 characters on
a line of output. But if we change the code to make use of the loop’s control variable i,
the output is very different. The following code prints 1 character on line 1, 2 characters
on line 2, and so on, producing a triangular figure as output.

for line in range(1, 6):

 print("#" * line)

#

##

###

####

#####

Suppose we want to print a more complex pattern, such as the following figure of
output:

#++#

##++++##

###++++++###

####++++++++####

#####++++++++++#####

This pattern is hard to print in a single statement because each line contains a complex
pattern. To help us break down the task, we will use a new variation of the print state-
ment that prints a partial line of output. This new form prints the text you provide, but
it does not drop the output down to the next line. The consequence is that you can place
several print statements in sequence and all of their output will appear on the same
line on the console.

The general syntax for printing a partial line of output is to place a comma followed
by end="" inside the parentheses of your print statement:

print(expression, end="")

Syntax template: Printing partial line of output

The end="" syntax looks a bit odd; here’s what it is really doing. The print statement
has a notion of an end marker that it will print after whatever text you write in paren-
theses. By default the end marker is "\n", which is a line break character. This means
that after printing the text you provide, a "\n" is printed, causing the console to move to
the next line. By writing end="" we are changing the end marker into an empty string,
because we don’t want any line break or other characters to print after the text or value

M02_REGE5983_01_SE_C02.indd 96 14/06/2018 15:25

we’re printing. This causes the console to remain on the same line after printing. You
can actually set the end marker to be any arbitrary string, but that is not a common style
and we won’t use it in this text.

If we use our previous code as a starting point, it contains a loop with a range(1, 6)
and a loop variable named i to print exactly i copies of the "#" character on each line.
For this new figure we want that same number of "#" characters, followed by twice that
many "+" signs, followed by the original number of "#" characters a second time. To
print all three of those character sequences on the same line, we will use three print
statements inside the for loop as follows:

printing a complex pattern using string multiplication

and partial lines of output

for line in range(1, 6):

 print("#" * line, end="")

 print("+" * (2 * line), end="")

 print("#" * line)

#++###++++#####++++++#######++++++++#########++++++++++#####

Earlier in this chapter we saw that we can write multiple values to print, separated by
commas. We also saw the sep="text" notation for controlling what characters should
appear between each of those values. An alternative style for printing the previous figure
would be to write all three sequences of characters (the initial # signs; the + signs; and
the final # signs) of each line in a single print statement. We want these sequences
of characters to appear with no separation between them, indicated by sep="". In this
form, you no longer need the end="", because the single print statement contains the
entire contents of the line of output to print.

printing multiple sequences of repeated characters

in a single print statement

for line in range(1, 6):

 print("#" * line, "+" * (2 * line), "#" * line, sep="")

#++#

##++++##

###++++++###

####++++++++####

#####++++++++++#####

Notice that the last print statement does not include end="" because we do want to
end the line of output after the final sequence of # characters has printed. If we acci-
dentally did include end="" on the final print statement, the output would be the
following jumbled mess with no line breaks:

2.3 The for Loop 97

M02_REGE5983_01_SE_C02.indd 97 14/06/2018 15:25

98 Chapter 2 Data and Definite Loops

Though this latter form is shorter and requires fewer lines of code, the authors find it
difficult to read and consider it poor style. We will favor using individual print state-
ments for each repeated sequence of characters, and we recommend that you do the
same in your programs.

Nested for Loops

Suppose you want to print a multiplication table such as the following:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

You can print such a table using standard for loops, but the code is lengthy and
redundant:

 1 # This redundant program prints a multiplication table using loops.

 2 def main():

 3 for x in range(1, 10):

 4 print(1 * x, end="\t")

 5 print()

 6

 7 for x in range(1, 10):

 8 print(2 * x, end="\t")

 9 print()

10

11 for x in range(1, 10):

12 print(3 * x, end="\t")

13 print()

14

15 for x in range(1, 10):

16 print(4 * x, end="\t")

17 print()

18

19 for x in range(1, 10):

20 print(5 * x, end="\t")

21 print()

22

23 main()

M02_REGE5983_01_SE_C02.indd 98 14/06/2018 15:25

Earlier in this chapter we discussed string multiplication, but that feature can’t help us
print this particular output. String multiplication helps us when we are repeating the
exact same character, but in this case the numbers are changing.

Notice the pattern in the redundant lines. There is a trio of lines containing a for
loop header, the loop body, and a print statement to end the line of output. This trio
of lines repeats five times in the program, with the only difference being the integer to
multiply by x each time. This integer, which we could call y, takes on the values 1, 2,
3, 4, and 5 in our code.

Luckily we can remove the redundancy by embedding the trio of repeated lines
inside a second loop. Such a loop is called a nested loop. The for loop controls a
statement, and the for loop is itself a statement, which means that one for loop can
control another for loop.

The following program prints the same multiplication table using nested for loops.
We take advantage of the end marker in our print statement, setting it to "\t" to
separate each number by a tab character so that they line up nicely on the console.

1 # This program prints a multiplication table using nested loops.

2 def main():

3 for y in range(1, 6):

4 for x in range(1, 10):

5 print(y * x, end="\t")

6 print()

7

8 main()

The behavior of this code is consistent with how standard for loops behave. The outer
loop executes once for each value in the specified numeric range. The outer loop’s range
is specified as range(1, 6) and the outer loop variable’s name is y, which means that
the inner code should execute with y = 1, then with y = 2, and so on, up to y = 5.
Figure 2.3 shows an expansion of what the nested loops are doing along with the con-
sole output produced by each pass of the outer loop.

The outer loop is the more long-lived of the two, the one that takes longer for each
of its iterations to finish. The outer loop defines y to be 1 and then executes the entire
inner loop. Then the outer loop assigns y to be 2 and then executes the entire inner loop
again, and so on.

Nested loops and string multiplication both involve repetition, but nested loops are
more versatile and powerful. Many programming languages don’t support string mul-
tiplication, but you can achieve a similar effect using a nested loop. For example, we
previously saw the following program for printing a triangular figure:

print triangular figure w/ string multiplication

for i in range(1, 6):

 print("#" * i)

2.3 The for Loop 99

M02_REGE5983_01_SE_C02.indd 99 14/06/2018 15:25

100 Chapter 2 Data and Definite Loops

The purpose of the string multiplication was to print a given character a given number
of times. If Python did not support string multiplication, you could still print the same
figure using a nested loop as follows, where each iteration of the inner loop prints a
single character:

Figure 2.3 Nested loop expansion

 for y in range(1, 6):

 for x in range(1, 10):

 print(y * x, end="\t")

 print()

 Code (expanded) Output

y = 1

for x in range(1, 10):

 print(y * x, end="\t") 1 2 3 4 5 6 7 8 9

print()

y = 2

for x in range(1, 10):

 print(y * x, end="\t") 2 4 6 8 10 12 14 16 18

print()

y = 3

for x in range(1, 10):

 print(y * x, end="\t") 3 6 9 12 15 18 21 24 27

print()

y = 4

for x in range(1, 10):

 print(y * x, end="\t") 4 8 12 16 20 24 28 32 36

print()

y = 5

for x in range(1, 10):

 print(y * x, end="\t") 5 10 15 20 25 30 35 40 45

print()

M02_REGE5983_01_SE_C02.indd 100 14/06/2018 15:25

2.4 Managing Complexity 101

print triangular figure w/out string multiplication

for i in range(1, 6):

 for j in range(i):

 print("#")

Scope

The part of a program in which a particular definition is valid.

Local Variable

A variable defined inside a function that is accessible only in that function.

You’ve seen that when it comes to defining functions, you can put them in any order
whatsoever. The scope of a function is the entire program file in which it appears.
Variables work differently. The simple rule is that the scope of a variable definition
extends from the point where it is defined to the end of the function that encloses it.

This scope rule has several implications. Consider first what it means for different
functions. Each function has its own set of statements to be executed when the function
is called. Any variables defined inside a function’s indented set of statements won’t be
available outside that function. We refer to such variables as local variables.

#

##

###

####

#####

Of course, the string multiplication version of the code is cleaner and simpler, so we
will favor that approach over a nested loop when it is viable to do so.

2.4 Managing Complexity

You’ve learned about several new programming constructs in this chapter, and it’s time
to put the pieces together to solve some complex tasks. As Brian Kernighan, one of the
coauthors of The C Programming Language, once said, “Controlling complexity is the
essence of computer programming.” In this section we will examine several techniques
that computer scientists use to solve complex problems without being overwhelmed
by complexity.

Scope

As programs get longer, it is increasingly likely that different parts of the program will
interfere with each other. Python helps us to manage this potential problem by enforc-
ing rules of scope.

M02_REGE5983_01_SE_C02.indd 101 14/06/2018 15:25

102 Chapter 2 Data and Definite Loops

Let’s look at a simple example involving two functions. In this example, the main
 function defines local variables x and y and gives them initial values. Then it calls the
function compute_sum, which tries to use the values of x and y to compute a sum.
However, because the variables x and y are local to the main function and are not visible
inside of the compute_sum function, this doesn’t work, so the interpreter displays a
runtime error called a NameError.

 1 # This program produces an error because

 2 # a variable is used out of scope.

 3

 4 def compute_sum():

 5 sum = x + y # error!

 6 print("sum =", sum)

 7

 8 def main():

 9 x = 3

10 y = 7

11 compute_sum()

12

13 main()

Traceback (most recent call last):

 File "scope1.py", line 13, in <module>

 main()

 File "scope1.py", line 11, in main

 compute_sum()

 File "scope1.py", line 5, in compute_sum

 sum = x + y

NameError: name 'x' is not defined

A loop variable defined in the header of a for loop can be accessed after the loop. Its value
after the loop will be equal to the value the loop variable held on the last iteration of the loop.
For example, in the following code, the loop variable i has the value 3 as it exits the loop:

inside loop: 0

inside loop: 1

inside loop: 2

inside loop: 3

after loop: 3

access a loop variable after the loop

for i in range(4):

 print("inside loop:", i)

print("after loop:", i)

M02_REGE5983_01_SE_C02.indd 102 14/06/2018 15:25

2.4 Managing Complexity 103

In general you will want to define variables inside of functions. It is possible, though, to
define variables outside of functions. Such variables, called global variables, are visible
to the entire program. At first glance, this sounds like an incredibly useful feature. You
might wonder, why not just define every variable as global?

Global Variable

A variable defined outside of your functions that is accessible to the entire
program. Global variables are generally considered to be poor style and are
discouraged from use.

Using global variables certainly sounds simpler and more powerful. But remember that
if you write large programs, you will inevitably spend a lot of time trying to find and fix
bugs. A very common category of software bugs involves accidentally setting a variable
to the wrong value. How do you find and fix such a bug? You need to examine all of
the parts of the program that might have corrupted the variable’s value. If the variable
is local, to find the bug you only need to examine the function in which the variable
was defined. But if the variable is global, literally any part of your program could have
caused the bug. Localizing variables provides more security to your code because it
minimizes the amount of your program that could modify a given variable’s value.

As a nonprogramming analogy, consider the use of refrigerators in student dor-
mitories. A dormitory building might have a large shared communal refrigerator that
anybody can use. The last time we were in a dorm we noticed that most of the rooms
also had individual refrigerators in them. This seems redundant, since everyone could
use the shared refrigerator to store all of their food, but the reason for the duplication
is obvious. Having your own private refrigerator protects your important food items
from being accessed or modified (eaten) by a roommate. If you put a sandwich into the
dorm’s shared refrigerator and it goes missing, the culprit could be anyone, and it will
be difficult to figure out who took it.

Python programs use variables to store values just as students use refrigerators to
store ice cream, drinks, and other valuables. If you want to guarantee the security of
something, you put it where nobody else can access it. You will use local variables in
your programs in much the same way. If each individual function has its own local
variables to use, you don’t have to consider possible interference from other parts of
the program.

(Don’t worry about the loss of the power of global variables. In the next chapter we
will learn about a technique called parameters that will allow us to selectively share
data values from one function to another.)

Pseudocode

As you write more complex algorithms, you will find that you can’t just write the
entire algorithm correctly all at once. If the desired behavior or output is very com-
plex, you will need to reason about the proper code before starting to write it. As
Brian Kernighan, one of the coauthors of The C Programming Language, once said,

M02_REGE5983_01_SE_C02.indd 103 14/06/2018 15:25

104 Chapter 2 Data and Definite Loops

For example, you can describe the problem of drawing a box as the following:

Print a box with 50 lines and 30 columns of asterisks.

While this statement describes the figure, it does not give specific instructions about
how to draw it (that is, what algorithm to use). Do you draw the figure line by line
or column by column? In Python, figures like these must be generated line by line,
because once a print statement has been performed on a line of output, that line can-
not be changed. There is no command for going back to a previous line in the output.
Therefore, you must output the first line in its entirety, then the second line in its
entirety, and so on. As a result, your decompositions for figures such as these will be
line-oriented at the top level. Thus, a pseudocode that is closer to Python would be:

for each of 50 lines:

 Print a line of 30 asterisks.

Using pseudocode, you can gradually convert an English description into something
that is easily translated into a Python program. The simple examples we’ve looked at so
far are hardly worth the application of pseudocode, so we will now examine the problem
of generating a more complex figure:

Pseudocode

English-like descriptions of algorithms. Programming with pseudocode
involves successively refining an informal description until it is easily trans-
lated into Python.

“Controlling complexity is the essence of computer programming.” Experienced pro-
grammers use several techniques to break down and solve complex problems with-
out being overwhelmed by their complexity. In this section we will explore one such
technique called pseudocode, which is when you write out a rough description of the
program in plain text rather than in actual Python code.

 *

This figure must also be generated line by line:

for each of 5 lines:

 Print one line of the triangle.

M02_REGE5983_01_SE_C02.indd 104 14/06/2018 15:25

2.4 Managing Complexity 105

Unfortunately, each line is different. Therefore, you must come up with a general rule
that fits all the lines. The first line of this figure has a series of asterisks on it with no
leading spaces. Each of the subsequent lines has a series of spaces followed by a series
of asterisks. Using your imagination a bit, you can say that the first line has 0 spaces
on it followed by a series of asterisks. This allows you to write a general rule for mak-
ing this figure:

for each of 5 lines:

 Print some spaces (possibly 0) on the output line.

 Print some asterisks on the output line.

 End the output line.

In order to proceed, you must determine a rule for the number of spaces and a rule for
the number of asterisks. Assuming that the lines are numbered 1 through 5, looking at the
figure, you can fill in Table 2.6 with the number of each kind of character on each line.

Line Spaces Asterisks Output

1 0 9 *********

2 1 7 *******

3 2 5 *****

4 3 3 ***

5 4 1 *

Table 2.6 Analysis of Triangle Output Figure

You want to find a relationship between line number and the other two columns. This
is simple algebra, because these columns are related in a linear way. The second column
is easy to get from the line number. It equals (line - 1). The third column is a little
tougher. Because it goes down by 2 every time and the first column goes up by 1 every
time, you need a multiplier of -2. Then you need an appropriate constant. The number
11 seems to do the trick, so you can make the third column equal (11 - 2 * line). You
can improve your pseudocode, then, as follows:

for each line from 1 through 5:

 Print (line - 1) spaces on the output line.

 Print (11 - 2 * line) asterisks on the output line.

 End the output line.

This pseudocode is simple to turn into a program:

1 # This program draws a downward

2 # triangular figure using loops.

3 def main():

4 for line in range(1, 6):

5 print(" " * (line - 1), end="")
Continued on next page

M02_REGE5983_01_SE_C02.indd 105 14/06/2018 15:25

106 Chapter 2 Data and Definite Loops

6 print("*" * (11 - 2 * line))

7

8 main()

 *

 *

 *

Sometimes we manage complexity by taking advantage of work that we have already
done. For example, how would you produce a similar triangle figure that points upward?

You could follow the same process you did before and find new expressions that pro-
duce the appropriate number of spaces and asterisks. However, there is an easier way.
This figure is the same as the previous one, except the lines appear in reverse order.
This is a good place to use a decrementing loop to run the for loop backward. Instead
of starting at 1 and going up through 5, you can start at 5 and go down through 1 using
a step of -1. The simple way to produce the upward-pointing triangle, then, is with the
following code:

1 # This program draws an upward

2 # triangular figure using loops.

3 def main():

4 for line in range(5, 0, -1):

5 print(" " * (line - 1), end="")

6 print("*" * (11 - 2 * line))

7

8 main()

Continued from previous page

M02_REGE5983_01_SE_C02.indd 106 14/06/2018 15:25

2.4 Managing Complexity 107

Suppose you wanted to draw both of these figures in a single program. It would be
tempting to try to come up with a single for loop that draws both figures, but there is
no simple way to make a single range that contains both an increasing and decreasing
sequence of numbers. Instead, you could turn each figure into a function and call both
of them from main with a blank line between them:

 1 # This program draws two triangular

 2 # figures using loops.

 3

 4 # Draws a 5-line downward-facing triangle of stars.

 5 def downward_triangle():

 6 for line in range(1, 6):

 7 print(" " * (line - 1), end="")

 8 print("*" * (11 - 2 * line))

 9

10 # Draws a 5-line upward-facing triangle of stars.

11 def upward_triangle():

12 for line in range(5, 0, -1):

13 print(" " * (line - 1), end="")

14 print("*" * (11 - 2 * line))

15

16 def main():

17 downward_triangle()

18 print()

19 upward_triangle()

20

21 main()

 *

 *

Once you get practice at writing pseudocode, you’ll find that it is often simple to
translate well-written pseudocode into correct Python code. This is partly because
of Python’s clean and simple syntax. Some programmers even jokingly call Python

M02_REGE5983_01_SE_C02.indd 107 14/06/2018 15:25

108 Chapter 2 Data and Definite Loops

“executable pseudocode” since its syntax is so similar to the way a person might write
down an algorithm in pseudocode format.

Constants

The triangle-drawing programs in the previous section draw a figure where each region
has five lines. How would you modify the code to produce similar triangle figures but
with only three lines in each part? Your first thought might be to simply change the
occurrences of 5 in the code to 3. However, making that change to the most recent ver-
sion of the program would produce the following incorrect output:

Constant

A variable that is defined once and never to be changed afterward. A global
constant can be accessed anywhere in the program (i.e., its scope is the entire
program file).

If you work through the geometry of the figure, you will discover that the problem is
with the use of the number 11 in the expressions that calculate the number of asterisks
to print. The number 11 actually comes from this formula:

2 * (number of lines) + 1

So when the number of lines is 5, the appropriate value is 11, but when the number of
lines is three, the appropriate value is 7. Programmers call numbers like these magic
numbers. They are magic in the sense that they seem to make the program work, but
their definition is not always obvious. Glancing at the draw_triangle program, one
is apt to ask, “Why 5? Why 11? Why 3? Why 7? Why me?”

To make programs more readable and more adaptable, you should try to avoid magic
numbers whenever possible. You do so by storing the magic numbers as variables. You
could use a local variable to store these values, but there are two problems with that
approach. The first problem is that any variable you define in one function, such as
downward_triangle, won’t be visible in the other function due to scope. The second
problem is that programmers expect that variables might have values that change over
time, but we don’t want this value to be modified after it is defined.

In cases like these, we define special variables called constants that are expected not
to be modified after they are defined. We most often define global constants, which
have a large scope so that they can be accessed throughout the entire program.

M02_REGE5983_01_SE_C02.indd 108 14/06/2018 15:25

2.4 Managing Complexity 109

You can choose a descriptive name for a constant that explains what it represents. You
can then use that name instead of referring to the specific value to make your programs
more readable and adaptable. For example, in the draw_triangle program, you
might want to introduce a constant called LINES that represents the number of lines.
(We follow the common convention of using all uppercase letters for constant names.)
You can use that constant in place of the magic number 5 and as part of an expression
to calculate a value. This approach allows you to replace the magic number 11 with the
formula from which it is derived (2 * LINES + 1).

Python does not have any special syntax for defining constants; they are just like
any other variable. What differs is where you define the constant; rather than defining
it indented inside a function, it is defined near the top of your program, unindented,
before any of your functions. For example:

LINES = 5

You can define a constant anywhere you can define a variable, but because constants are
often used by several different functions, we generally define them outside functions.
We can avoid using a magic number in the draw_triangle program by instead
referring to our constant for the number of lines. We can replace the 5 in the outer
loop with this constant and replace the 11 in the second inner loop with the expression
2 * LINES + 1. The result is the following program:

 1 # This program draws two triangular

 2 # figures using loops.

 3 LINES = 3

 4

 5 # Draws a downward-facing triangle of stars.

 6 def downward_triangle():

 7 for line in range(1, LINES + 1):

 8 print(" " * (line - 1), end="")

 9 print("*" * (2 * LINES + 1 - 2 * line))

10

11 # Draws an upward-facing triangle of stars.

12 def upward_triangle():

13 for line in range(LINES, 0, -1):

14 print(" " * (line - 1), end="")

15 print("*" * (2 * LINES + 1 - 2 * line))

16

17 def main():

18 downward_triangle()

19 print()

20 upward_triangle()

21

22 main()

M02_REGE5983_01_SE_C02.indd 109 14/06/2018 15:25

110 Chapter 2 Data and Definite Loops

This new program is more adaptable and can produce figures of different sizes with only
a single change. If the LINES constant is changed to 7, the program’s output becomes
the following:

 *

 *

 *

 *

Some programming languages allow the programmer to specify that a given variable
is a constant, which then produces an error if the code tries to modify the constant’s
value after it has been defined. Unfortunately Python does not include this feature. By
defining our constant in a global scope, Python does provide us with a bit of protection
against code that tries to change the constant’s value. For example, if you try to modify
the value of a constant from inside a function, the interpreter raises an error:

Bad code; tries to modify a global constant.

def upward_triangle():

 LINES += 3 # error!

 for line in range(LINES, 0, -1):

 ...

M02_REGE5983_01_SE_C02.indd 110 14/06/2018 15:25

2.5 Case Study: Hourglass Figure 111

+--------+

Traceback (most recent call last):

 File "hourglass2_error.py", line 43, in <module>

 main()

 File "hourglass2_error.py", line 39, in main

 draw_top()

 File "hourglass2_error.py", line 14, in draw_top

 LINES += 3

UnboundLocalError: local variable 'LINES'

 referenced before assignment

But unfortunately the protection is imperfect; if we instead wrote LINES = 7, the code
would run successfully and would draw the upward_triangle with a LINES value of
7 rather than 4. Therefore Python constants are technically just global variables and are
held constant only through convention and through the good behavior of the program-
mer writing the code. Modifying the value of a global constant variable is considered
very poor style and strongly discouraged. The expectation followed by Python pro-
grammers is that if a variable is named in UPPERCASE, it is to be treated as a constant,
and its value is not to be modified after it is defined. The language cannot force us to
obey this convention, but we are expected to take care to do so when writing our code.

2.5 Case Study: Hourglass Figure

Now we’ll consider an example that is even more complex. This program will draw an
“hourglass” figure made out of patterns of repeating characters. The desired output is
the following:

+----------+
|\12345678/|
| \123456/ |
| \1234/ |
| \12/ |
| \/ |
| /\ |
| /21\ |
| /4321\ |
| /654321\ |
|/87654321\|
+----------+

To solve it, we will follow three basic steps:

1. Decompose the task into subtasks, each of which will become a function.

2. For each subtask, make a table for the figure and compute formulas for each col-
umn of the table in terms of the line number.

3. Convert the tables into actual for loops and code for each function.

M02_REGE5983_01_SE_C02.indd 111 14/06/2018 15:25

112 Chapter 2 Data and Definite Loops

Problem Decomposition and Pseudocode

To generate this figure, you have to first break it down into subfigures. In doing so, you
should look for lines that are similar in one way or another. The first and last lines are
exactly the same. The five “top half” lines after the first line all fit one pattern, and the
five “bottom half” lines after that fit another. Figure 2.4 shows the patterns of characters.

Figure 2.4 Hourglass figure character patterns

+----------+ line

|\12345678/|

| \123456/ | top half

| \1234/ |

| \12/ |

| \/ |

| /\ |

| /21\ |

| /4321\ | bottom half

| /654321\ |

|/87654321\|

+----------+ line

Continued on next page

Thus, you can break down the overall problem into the following pseudocode:

Draw a solid line.

Draw the top half of the hourglass.

Draw the bottom half of the hourglass.

Draw a solid line.

You should solve each subproblem independently. Eventually you’ll want to incorporate
a constant to make the program more flexible, but let’s first solve the problem without
worrying about the use of a constant.

The “Draw a solid line” task can be further specified as:

Draw a solid line:

 Print a plus on the output line.

 Print 10 dashes on the output line.

 Print a plus on the output line.

 End the line of output.

This set of instructions translates easily into a function:

Prints a solid line of dashes.

def draw_line():

M02_REGE5983_01_SE_C02.indd 112 14/06/2018 15:25

2.5 Case Study: Hourglass Figure 113

 print("+", end="")

 print("-" * 10, end="")

 print("+")

The top half of the hourglass is more complex. Here is a typical line:

| \1234/ |

There are four individual characters, separated by spaces and numbers.

 | \ 1234 / |

bar spaces backslash numbers slash spaces bar

Thus, a first approximation in pseudocode might look like this:

for each of 5 lines:

 Print a bar.

 Print some spaces.

 Print a backslash.

 Print some numbers.

 Print a slash.

 Print some spaces.

 Print a bar.

 End the line of output.

Again, you can make a table to figure out the required expressions. Writing the
individual characters will be easy enough to translate into Python, but you need to
be more specific about the spaces and numbers. Each line in this group contains two
sets of spaces and one set of numbers. Table 2.7 shows how many to use. We do not
list the |, \, and / characters in the table because they always appear exactly once
on each line.

The two sets of spaces go from 0 to 4 when the line number goes from 1 to 5; this can
be expressed as (line - 1). The range of numbers on each line is more complicated.

Line Spaces Numbers Spaces Output

1 0 1--8 0 |\12345678/|

2 1 1--6 1 | \123456/ |

3 2 1--4 2 | \1234/ |

4 3 1--2 3 | \12/ |

5 4 none 4 | \/ |

Table 2.7 Analysis of Hourglass Figure

Continued from previous page

M02_REGE5983_01_SE_C02.indd 113 14/06/2018 15:25

114 Chapter 2 Data and Definite Loops

As the line number goes up 1 to 2 to 3 and so on, the max value appearing in the output
goes down by 2 each time from 8 to 6 and so on. One way of figuring out the pattern
would be to think of this as an algebraic equation between the line number and the
max number value. You could also think about what the max number value would
be if there were a line number 0; by the pattern we’ve seen, the max would be 10.
Therefore, the general formula for the range’s max is (10 - 2 * line). But we have to
write our loop using a Python range, and ranges exclude the max value you write, so
we need to shift our formula by +1 to account for this. That means we actually want a
range(1, 11 - 2 * line).

for each line from 1 through 5:

 Print a bar.

 Print (line - 1) spaces.

 Print a backslash.

 Print the range of integers from 1 to (11 - 2 * line).

 Print a slash.

 Print (line - 1) spaces.

 Print a bar.

 End the line of output.

Initial Structured Version

The pseudocode for the top half of the hourglass is easily translated into a function
called draw_top. A similar solution exists for the bottom half of the hourglass, which
we will call draw_bottom. The main function calls the functions to draw the top and
bottom halves with lines around them.

Our code uses the end="" modifier for many of its print statements so that we can
print each chunk of a line’s complex sequence of characters using a separate print
statement.

We can produce most of the repeated sequences of characters using string multiplica-
tion with the * operator. The one exception is the sequences of integers in the middle
of each line, which require us to use a nested for loop.

Put together, the program looks like this:

 1 # This program draws an hourglass figure

 2 # of characters and numbers using nested loops.

 3

 4 # Prints a solid line of dashes.

 5 def draw_line():

 6 print("+", end="")

 7 print("-" * 10, end="")

 8 print("+")

Continued on next page

M02_REGE5983_01_SE_C02.indd 114 14/06/2018 15:25

2.5 Case Study: Hourglass Figure 115

 9

10 # Produces the top half of the hourglass figure.

11 def draw_top():

12 for line in range(1, 6):

13 print("|", end="")

14 print(" " * (line - 1), end="")

15 print("\\", end="")

16 for i in range(1, 11 - 2 * line):

17 print(i, end="")

18 print("/", end="")

19 print(" " * (line - 1), end="")

20 print("|")

21

22 # Produces the bottom half of the hourglass figure.

23 def draw_bottom():

24 for line in range(1, 6):

25 print("|", end="")

26 print(" " * (5 - line), end="")

27 print("/", end="")

28 for i in range(2 * line - 2, 0, -1):

29 print(i, end="")

30 print("\\", end="")

31 print(" " * (5 - line), end="")

32 print("|")

33

34 def main():

35 draw_line()

36 draw_top()

37 draw_bottom()

38 draw_line()

39

40 main()

Adding a Constant

The hourglass program produces the desired output, but it is not very flexible. What if
we wanted to produce a similar figure of a different size? The original problem involved
an hourglass figure that had five lines in the top half and five lines in the bottom half.
What if we wanted the following output, with three lines in the top half and three lines
in the bottom half?

Continued from previous page

M02_REGE5983_01_SE_C02.indd 115 14/06/2018 15:25

116 Chapter 2 Data and Definite Loops

Obviously the program would be more useful if we could make it flexible enough to
produce either output. We do so by eliminating the magic numbers with the introduc-
tion of a constant. You might think that we need to introduce two constants, one for
the height and one for the width, but because of the regularity of this figure, the height
is determined by the width and vice versa. Consequently, we only need to introduce a
single constant. Let’s use the height of the hourglass halves:

SUB_HEIGHT = 5

We’ve called the constant SUB_HEIGHT rather than HEIGHT because it refers to
the height of each of the two halves, rather than the figure as a whole. Notice how
we use the underscore character to separate the different words in the name of the
constant.

So, how do we modify the original program to incorporate this constant? We look
through the program for any magic numbers and insert the constant or an expres-
sion involving the constant where appropriate. For example, both the draw_top and
draw_bottom functions have a for loop that executes 5 times to produce 5 lines of
output. We change this to 3 to produce 3 lines of output, and more generally, we change
it to SUB_HEIGHT to produce SUB_HEIGHT lines of output.

In other parts of the program we have to update our formulas for the number of
dashes, spaces, and dots. Sometimes we can use educated guesses to figure out how
to adjust such a formula to use the constant. If you can’t guess a proper formula, you
can use the table technique to find the appropriate formula. Using this new output
with a subheight of 3, you can update the various formulas in the program. We also
show what the formulas would be for a subheight of 4. Table 2.8 shows the various
formulas.

Sub
Height

Dashes
in line

Spaces
in top

Numbers in top Spaces
in bottom

Numbers in bottom

3 6 line-1 range(1, 7-2*line) 3-line range(2*line-2, 0, -1)

4 8 line-1 range(1, 9-2*line) 4-line range(2*line-2, 0, -1)

5 10 line-1 range(1, 11-2*line) 5-line range(2*line-2, 0, -1)

Table 2.8 Analysis of Different Height Figures

+------+
|\1234/|
| \12/ |
| \/ |
| /\ |
| /21\ |
|/4321\|
+------+

M02_REGE5983_01_SE_C02.indd 116 14/06/2018 15:25

2.5 Case Study: Hourglass Figure 117

We then go through each formula (each column in the table) and figure out how to
replace it with a new formula involving the constant:

• The number of dashes increases by 2 when the subheight increases by 1, so the
general expression is twice the subfigure height, or 2 * SUB_HEIGHT.

• The number of spaces in draw_top does not change when the subheight changes,
so the expression does not need to be altered.

• The range of numbers in draw_top involves the number 7 for a subheight of 3,
the number 9 for a subheight of 4, and the number 11 for a subheight of 5. The
general expression for this is 2 * SUB_HEIGHT + 1, and substituting this into the
original range formula leads to an overall range of range(1, 2 * SUB_HEIGHT
+ 1 - 2 * line).

• The number of spaces in draw_bottom involves the value 3 for a subheight of
3, the value 4 for a subheight of 4, and the value 5 for a subheight of 5. This is
clearly just the subfigure height, and substituting it into the expression yields
SUB_HEIGHT - line.

• The range of numbers in draw_bottom does not change when subheight changes,
so the expression does not need to be altered.

Here is the new version of the program with a constant for the subheight. It uses a
SUB_HEIGHT value of 3, but we could change this to other values to produce figures
of other sizes.

 1 # This program draws an hourglass figure

 2 # of characters and numbers using nested loops.

 3 # This version uses a global constant for the figure size.

 4 SUB_HEIGHT = 4

 5

 6 # Prints a solid line of dashes.

 7 def draw_line():

 8 print("+", end="")

 9 print("-" * (2 * SUB_HEIGHT), end="")

10 print("+")

11

12 # Produces the top half of the hourglass figure.

13 def draw_top():

14 for line in range(1, SUB_HEIGHT + 1):

15 print("|", end="")

16 print(" " * (line - 1), end="")

17 print("\\", end="")

18 for i in range(1, 2 * SUB_HEIGHT + 1 - 2 * line):

19 print(i, end="")

20 print("/", end="")
Continued on next page

M02_REGE5983_01_SE_C02.indd 117 14/06/2018 15:25

118 Chapter 2 Data and Definite Loops

21 print(" " * (line - 1), end="")

22 print("|")

23

24 # Produces the bottom half of the hourglass figure.

25 def draw_bottom():

26 for line in range(1, SUB_HEIGHT + 1):

27 print("|", end="")

28 print(" " * (SUB_HEIGHT - line), end="")

29 print("/", end="")

30 for i in range(2 * line - 2, 0, -1):

31 print(i, end="")

32 print("\\", end="")

33 print(" " * (SUB_HEIGHT - line), end="")

34 print("|")

35

36 def main():

37 draw_line()

38 draw_top()

39 draw_bottom()

40 draw_line()

41

42 main()

Notice that the SUB_HEIGHT constant is defined at the top of the program, giving it
program-wide scope, rather than locally in the individual functions. While localizing
variables is a good idea, the same is not true for constants. We localize variables to
avoid potential interference, but that argument doesn’t hold for constants, since they are
guaranteed not to change. Another argument for using local variables is that it makes
functions more independent. That argument has some merit when applied to constants,
but not enough. It is true that constants introduce dependencies between functions, but
often that is what you want. For example, the three functions in the program should not
be independent of each other when it comes to the size of the figure. Each subfigure
has to use the same size constant. Imagine the potential disaster if each function had
its own SUB_HEIGHT, each with a different value; none of the pieces would fit together.

Chapter Summary

• Python groups data into types. Some of Python’s built-

in types are int for integers, float for real numbers,

str for sequences of text characters, and bool for

logical values.

• Values and computations are called expressions. The

simplest expressions are individual values, also called

literals. Some example literals are: 42, 3.14, "Q", and

False. Expressions may contain operators, as in

(3 + 29) - 4 * 5. The division operation is split

into exact division (/), integer division (//), and

remainder (%) operators. You can test expressions and

operators in the Python Shell.

• Rules of precedence determine the order in which mul-

tiple operators are evaluated in complex expressions.

Continued from previous page

M02_REGE5983_01_SE_C02.indd 118 14/06/2018 15:25

Self-Check Problems 119

Multiplication and division are performed before addi-

tion and subtraction. Parentheses can be used to force a

particular order of evaluation.

• Variables are memory locations in which values can be

stored. A variable is defined with a name and an initial

value. The variable’s value can be used later in the pro-

gram or modified.

• Data can be printed on the console using the print

function, just like text strings. Multiple comma- separated

values can be printed to produce a more complex line

of output, or you can use the str function to convert

values into strings for printing.

• A loop is used to execute a group of statements sev-

eral times. The for loop is one kind of loop that can

be used to apply the same statements over a range of

numbers or to repeat statements a specified number

of times. A loop can contain another loop, called a

nested loop.

• A variable exists from the line where it is defined to

the end of the function that encloses it. This range, also

called the scope of the variable, constitutes the part of

the program where the variable can legally be used. A

program can also contain constants, which are variables

defined in a global scope that are not supposed to be

modified after they are defined.

• An algorithm can be easier to write if you first write

an English description of it. Such a description is also

called pseudocode.

Self-Check Problems

Section 2.1: Basic Data Concepts

 1. Trace the evaluation of the following expressions, and give their resulting values:

a. 2 + 3 * 4 - 6

b. 14 // 7 * 2 + 30 // 5 + 1

c. (12 + 3) // 4 * 2

d. (238 % 10 + 3) % 7

e. (18 - 7) * (43 % 10)

f. 2 + 19 % 5 - (11 * (5 // 2))

g. 813 % 100 // 3 + 2.4

h. 26 % 10 % 4 * 3

i. 22 + 4 ** 1 * 2

j. 23 % 8 % 3

k. 12 - 2 ** 2 - 3 ** 2

l. 6/2 + 7//3

m. 6 * 7 % 4

n. 3 * 4 + 2 * 3

o. 177 % 100 % 10 // 2

p. 89 % (5 + 5) % 5

q. 392 // 10 % 10 // 2

r. 8 * 2 - 7 // 4

s. 37 % 20 % 3 * 4

t. 17 % 10 // 4

 2. Trace the evaluation of the following expressions, and give their resulting values:

a. 4.0 / 2 * 9 / 2

b. 2.5 * 2 + 8 / 5.0 + 10 // 3

c. 12 // 7 * 4.4 * 2 // 4

M02_REGE5983_01_SE_C02.indd 119 14/06/2018 15:25

120 Chapter 2 Data and Definite Loops

d. 4 * 3 // 8 + 2.5 * 2

e. (5 * 7.0 / 2 - 2.5) / 5 * 2

f. 41 % 7 * 3 // 5 + 5 // 2 * 2.5

g. 10.0 / 2 / 4

h. 8 // 5 + 13 // 2 / 3.0

i. (2.5 + 3.5) / 2

j. 9 // 4 * 2.0 - 5 // 4

k. 9 / 2.0 + 7 // 3 - 3.0 / 2

l. 813 % 100 // 3 + 2.4

m. 27 // 2 / 2.0 * (4.3 + 1.7) - 8 // 3

n. 53 // 5 / (0.6 + 1.4) / 2 ** 1 + 13 // 2

o. 2.5 * 2 + 8 / 5.0 + 10 // 3

p. 2 * 3 // 4 * 2 / 4.0 + 4.5 - 1

q. 89 % 10 // 4 * 2.0 / 5 + (1.5 + 1.0 / 2) * 2

r. 1 ** 5 + 7 ** 2 / 2.0

Section 2.2: Variables

 3. Which of the following choices is the correct syntax for defining a real number variable named grade and initial-

izing its value to 4.0?

a. int grade = 4.0

b. grade = float 4.0

c. float grade = 4.0

d. grade = 4

e. grade = 4.0

 4. Suppose you have an variable called number that stores an integer. What Python expression produces the last digit

of the number (the 1s place)?

 5. The following program contains 4 mistakes! What are they?

def main():

 x = 2

 print("x is" x)

 x = 15.2 # set x to 15.2

 print("x is now , x")

 y = 0 # set y to 1 more than x

 y = int x + 1

 print("x and y are " , x , and , y)

main()

 6. Suppose you have a variable called number that stores an integer. What Python expression produces the second-to-last

digit of the number (the 10s place)? What expression produces the third-to-last digit of the number (the 100s place)?

 7. What are the values of a, b, and c after the following statements?

a = 5

b = 10

c = b

a = a + 1

b = b - 1

c = c + a

M02_REGE5983_01_SE_C02.indd 120 14/06/2018 15:25

 8. What are the values of first and second at the end of the following code? How would you describe the net effect

of the code statements in this exercise? Consider the following code:

first = 8

second = 19

first = first + second

second = first - second

first = first - second

 9. Rewrite the code from the previous exercise to be shorter, by defining the variables together and by using the special

assignment operators (e.g., += , -=, *=, and /=) as appropriate.

 10. What are the values of i, j, and k after the following statements?

i = 2

j = 3

k = 4

x = i + j + k

i = x - i - j

j = x - j - k

k = x - i - k

 11. What is the output from the following code?

max = 0

min = 10

max = 17 - 4 // 10

max = max + 6

min = max - min

print(max * 2)

print(max + min)

print(max)

print(min)

 12. The following program redundantly repeats the same expressions many times. Modify the program to remove all

redundant expressions using variables.

def main():

 # Calculate pay at work based on hours worked each day

 print("My total hours worked:")

 print(4 + 5 + 8 + 4)

 print("My hourly salary:")

 print("8.75")

 print("My total pay:")

 print((4 + 5 + 8 + 4) * 8.75)

 print("My taxes owed:") # 20% tax

 print((4 + 5 + 8 + 4) * 8.75 * 0.20)

main()

Self-Check Problems 121

M02_REGE5983_01_SE_C02.indd 121 14/06/2018 15:25

122 Chapter 2 Data and Definite Loops

Section 2.3: The for Loop

 13. Complete the following code, replacing the “FINISH ME” parts with your own code:

def main():

 for i in range("FINISH ME"):

 print("FINISH ME")

main()

to produce the following output:

 14. Assume that you have a variable called count that will take on the values 1, 2, 3, 4, and so on. You are going to

 formulate expressions in terms of count that will yield different sequences. For example, to get the sequence 2, 4,

6, 8, 10, 12, ... , you would use the expression (2 * count). Fill in the following table, indicating an expression

that will generate each sequence.

Sequence Expression

2, 4, 6, 8, 10, 12, . . .

4, 19, 34, 49, 64, 79, . . .

30, 20, 10, 0, 210, 220, . . .

-7, -3, 1, 5, 9, 13, . . .

97, 94, 91, 88, 85, 82, . . .

 15. Complete the code for the following for loop:

for i in range(1, 7):

 # your code here

The loop should print the following numbers, one per line:

 16. What is the output of the following odd_stuff function?

def odd_stuff():

 number = 4

 for count in range(1, number + 1):

 print(number)

 number = number // 2

2 times 1 = 2

2 times 2 = 4

2 times 3 = 6

2 times 4 = 8

-4

14

32

50

68

86

M02_REGE5983_01_SE_C02.indd 122 14/06/2018 15:25

 17. What is the output of the following loop?

total = 10

for number in range(1, total // 2):

 total = total - number

 print(total, number)

 18. What is the output of the following loop?

print("+---+")

for i in range(1, 4):

 print("\\ /")

 print("/ \\")

print("+---+")

 19. What is the output of the following loop?

print("T-minus ", end="")

for i in range(5, 0, -1):

 print(i, end=", ")

print("Blastoff!")

 20. What is the output of the following sequence of loops?

for i in range(1, 6):

 for j in range(1, 11):

 print(i * j, end=" ")

 print()

 21. What is the output of the following sequence of loops?

for i in range(1, 3):

 for j in range(1, 4):

 for k in range(1, 5):

 print("*", end="")

 print("!", end="")

 print()

Section 2.4: Managing Complexity

 22. Suppose that you have a variable called line that will take on the values 1, 2, 3, 4, and so on, and a constant named SIZE

that takes one of two values. You are going to formulate expressions in terms of line and SIZE that will yield different

sequences of numbers of characters. Fill in the table below, indicating an expression that will generate each sequence.

line Value Constant SIZE Value Number of Characters Expression

a. 1, 2, 3, 4, 5, 6, ... 1 4, 6, 8, 10, 12, 14, ...

 1, 2, 3, 4, 5, 6, ... 2 6, 8, 10, 12, 14, 16, ...

b. 1, 2, 3, 4, 5, 6, ... 3 13, 17, 21, 25, 29, 33, ...

 1, 2, 3, 4, 5, 6, ... 5 19, 23, 27, 31, 35, 39, ...

c. 1, 2, 3, 4, 5, 6, ... 4 10, 9, 8, 7, 6, 5, ...

 1, 2, 3, 4, 5, 6, ... 9 20, 19, 18, 17, 16, 15, ...

Self-Check Problems 123

M02_REGE5983_01_SE_C02.indd 123 14/06/2018 15:25

124 Chapter 2 Data and Definite Loops

 23. Write a table that determines the expressions for the number of each type of character on each of the 6 lines in the

following output.

 24. Suppose that a program has been written that produces the output shown in the previous problem. Now the author

wants the program to be scalable using a constant called SIZE. The previous output used a constant height of 6,

since there were 6 lines. The following is the output for a constant height of 4. Create a new table that shows the

expressions for the character counts at this new size of 4, and compare these tables to figure out the expressions for

any size using the SIZE constant.

Exercises

1. Write a for loop that produces the following output:

1 4 9 16 25 36 49 64 81 100

For added challenge, try to modify your code so that it does not need to use the * multiplication operator. (It can be

done! Hint: Look at the differences between adjacent numbers.)

2. The Fibonacci numbers are a sequence of integers in which the first two elements are 1, and each following

 element is the sum of the two preceding elements. The mathematical definition of each kth Fibonacci number is the

following:

1 1 2 3 5 8 13 21 34 55 89 144

Write a for loop that computes and prints the first 12 Fibonacci numbers.

!!!!!!!!!!!!!!!!!!!!!!

\\!!!!!!!!!!!!!!!!!!//

\\\\!!!!!!!!!!!!!!////

\\\\\\!!!!!!!!!!//////

\\\\\\\\!!!!!!////////

\\\\\\\\\\!!//////////

!!!!!!!!!!!!!!

\\!!!!!!!!!!//

\\\\!!!!!!////

\\\\\\!!//////

F(k - 1) + F(k - 2), k > 2
F(k) =

1, k <= 2

The first 12 Fibonacci numbers are

M02_REGE5983_01_SE_C02.indd 124 14/06/2018 15:25

3. Write for loops to produce the following output:

*

**

4. Write for loops to produce the following output:

1

22

333

4444

55555

666666

7777777

5. Write for loops to produce the following output:

| | | | | |
123456789012345678901234567890123456789012345678901234567890

6. It’s common to print a rotating, increasing list of single-digit numbers at the start of a program’s output as a visual

guide to number the columns of the output to follow. With this in mind, write nested for loops to produce the fol-

lowing output, with each line 60 characters wide:

| | | | | | | | | |
12340123401234012340123401234012340123401234012340
| | | | | | |
12345670123456701234567012345670123456701234567012345670

7. Modify your code from the previous exercise so that it could easily be modified to display a different range of num-

bers (instead of 1234567890) and a different number of repetitions of those numbers (instead of 60 total characters),

with the vertical bars still matching up correctly. Use constants instead of “magic numbers.” Here are some example

outputs that could be generated by changing your constants:

Exercises 125

M02_REGE5983_01_SE_C02.indd 125 14/06/2018 15:25

126 Chapter 2 Data and Definite Loops

-----1-----

----333----

---55555---

--7777777--

-999999999-

8. Write a function called print_design that produces the following output. Use for loops to capture the structure

of the figure.

!!!!!!!!!!!!!!!!!!!!!!

\\!!!!!!!!!!!!!!!!!!//

\\\\!!!!!!!!!!!!!!////

\\\\\\!!!!!!!!!!//////

\\\\\\\\!!!!!!////////

\\\\\\\\\\!!//////////

9. Write a Python program that produces the following output. Use for loops and string multiplication to capture the

structure of the figure.

Height 4 Height 8

!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

\\!!!!!!!!!!// \\!!!!!!!!!!!!!!!!!!!!!!!!!!//

\\\\!!!!!!//// \\\\!!!!!!!!!!!!!!!!!!!!!!////

\\\\\\!!////// \\\\\\!!!!!!!!!!!!!!!!!!//////

 \\\\\\\\!!!!!!!!!!!!!!////////

 \\\\\\\\\\!!!!!!!!!!//////////

 \\\\\\\\\\\\!!!!!!////////////

 \\\\\\\\\\\\\\!!//////////////

10. Modify your program from the previous exercise to use a constant for the figure’s height. (You may want to make

loop tables first.) The previous output used a constant height of 6. The following are the outputs for constant heights

of 4 and 8:

M02_REGE5983_01_SE_C02.indd 126 14/06/2018 15:25

+===+===+
+===+===+	
+===+===+

11. Write a Python program that produces the following output. Use for loops and string multiplication to capture the

structure of the figure. Once you get it to work, add a constant so that the size of the figure can be changed simply by

changing the constant’s value.

////////////////\\\\\\\\\\\\\\\\

////////////********\\\\\\\\\\\\

////////****************\\\\\\\\

////************************\\\\

12. Write a Python program that produces the following output. Use for loops to capture the structure of the figure.

Height 3 Height 6

////////\\\\\\\\ ////////////////////\\\\\\\\\\\\\\\\\\\\

////********\\\\ ////////////////********\\\\\\\\\\\\\\\\

**************** ////////////****************\\\\\\\\\\\\

 ////////************************\\\\\\\\

 ////********************************\\\\

 **

13. Modify the program from the previous exercise to use a constant for the figure’s height. (You may want to make loop

tables first.) The previous output used a constant height of 5. The following are the outputs for constant heights of 3

and 6:

Exercises 127

M02_REGE5983_01_SE_C02.indd 127 14/06/2018 15:25

128 Chapter 2 Data and Definite Loops

Programming Projects

1. Write a program that produces the following output using nested for loops and string multiplication:

****** //////////// ******

***** //////////\\ *****

**** ////////\\\\ ****

*** //////\\\\\\ ***

** ////\\\\\\\\ **

* //\\\\\\\\\\ *

 \\\\\\\\\\\\

+---------+

| * |

| /*\ |

| //*\\ |

| ///*\\\ |

| */// |

| *// |

| */ |

| * |

+---------+

| */// |

| *// |

| */ |

| * |

| * |

| /*\ |

| //*\\ |

| ///*\\\ |

+---------+

2. Write a program that produces the following output using nested for loops:

M02_REGE5983_01_SE_C02.indd 128 14/06/2018 15:25

 /**\

 //**\\

 ///**\\\

 ////**\\\\

 /////**\\\\\

+=*=*=*=*=*=*+

|../\..../\..|

|./\/\../\/\.|

|/\/\/\/\/\/\|

|\/\/\/\/\/\/|

|.\/\/..\/\/.|

|..\/....\/..|

+=*=*=*=*=*=*+

|\/\/\/\/\/\/|

|.\/\/..\/\/.|

|..\/....\/..|

|../\..../\..|

|./\/\../\/\.|

|/\/\/\/\/\/\|

+=*=*=*=*=*=*+

 /**\

 //**\\

 ///**\\\

 ////**\\\\

 /////**\\\\\

|""""""""""|

 \::::::::/

 \::::::/

 \::::/

 \::/

 ||

 /::\

 /::::\

 /::::::\

 /::::::::\

|__________|

3. Write a program that produces the following hourglass figure as its output using nested for loops and string

multiplication:

4. Write a program that produces the following rocket ship figure as its output using nested for loops and string multi-

plication. Use a constant to make it possible to change the size of the rocket (the following output uses a size of 3).

Programming Projects 129

M02_REGE5983_01_SE_C02.indd 129 14/06/2018 15:25

130 Chapter 2 Data and Definite Loops

 ||

 ||

 ||

 ||

 __/||__

 __/:::||:::__

 __/::::::||::::::__

__/:::::::::||:::::::::__

|""""""""""""""""""""""""|

/\/\/\/\/\/\/\/\/\/\//

 /\/\/\/\/\/\/\/\//

 /\/\/\/\/\/\//

 /\/\/\/\//

 ||

 ||

 ||

 ||

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 __/||__

 __/:::||:::__

 __/::::::||::::::__

__/:::::::::||:::::::::__

|""""""""""""""""""""""""|

5. Write a program that produces the following figure (which vaguely resembles the Seattle Space Needle) as its output

using nested for loops and string multiplication. Use a constant to make it possible to change the size of the figure

(the following output uses a size of 4).

M02_REGE5983_01_SE_C02.indd 130 14/06/2018 15:25

 xxx xxxxxx

X---X X/-----X

X---X X//----X

X---X X///---X

X---X X////--X

X---X X/////-X

 xxxxxxX~~~~~~X xxx

 X-----\X X---X

 X----\\X X---X

 X---\\\X X---X

 X--\\\\X X---X

 X-\\\\\X X---X

 X~~~~~~Xxxxxxx

 X~~~~~~X

 X~~~~~~X

 X~~~~~~X

 X~~~~~~X

 X~~~~~~X

 X~~~~~~X

 +------------------------------+

 / ___/

 / ___/__//

 / ___/__/__///

 / ___/__/__/__////

 / ___/__/__/__/__/////

 / ___/__/__/__/__/__//////

 / ___/__/__/__/__/__/__///////

 / ___/__/__/__/__/__/__/__////////

 / ___/__/__/__/__/__/__/__/__/////////

 /___/__/__/__/__/__/__/__/__/__//////////

+------------------------------+//////////

| Building Python Programs |//////////

| Building Python Programs |////////

| Building Python Programs |//////

| Building Python Programs |////

| Building Python Programs |//

+------------------------------+

6. Write a program that produces the following figure (which vaguely resembles a textbook) as its output using nested

for loops and string multiplication. Use a class constant to make it possible to change the size of the figure (the fol-

lowing output uses a size of 10).

7. Write a program that produces the following figure (which vaguely resembles a saguaro cactus) as its output using

nested for loops and string multiplication. Use a class constant to make it possible to change the size of the figure

(the following output uses a size of 3).

Programming Projects 131

M02_REGE5983_01_SE_C02.indd 131 14/06/2018 15:25

